Search results for "metal nanoparticle"
showing 10 items of 175 documents
DFT calculations on subnanometric metal catalysts: a short review on new supported materials
2018
Metal clusters have been used in catalysis for a long time, even in industrial production protocols, and a large number of theoretical and experimental studies aimed at characterizing their structure and reactivity, either when supported or not, are already present in the literature. Nevertheless, in the last years the advances made in the control of the synthesis and stabilization of subnanometric clusters promoted a renewed interest in the field. The shape and size of sub-nanometer clusters are crucial in determining their catalytic activity and selectivity. Moreover, if supported, subnanometric clusters could be highly influenced by the interactions with the support that could affect geo…
Controlling phase formation in solids: rational synthesis of phase separated Co@Fe2O3 heteroparticles and CoFe2O4 nanoparticles
2011
A wet chemical approach from organometallic reactants allowed the targeted synthesis of Co@Fe(2)O(3) heterodimer and CoFe(2)O(4) ferrite nanoparticles. They display magnetic properties that are useful for magnetic MRI detection.
Multivalued and Reversible Logic Gates Implemented with Metallic Nanoparticles and Organic Ligands
2010
Metal enhanced fluorescence in rare earth doped plasmonic core–shell nanoparticles
2013
International audience; We theoretically and numerically investigate metal enhanced fluorescence of plasmonic core–shell nanoparticles doped with rare earth (RE) ions. Particle shape and size are engineered to maximize the average enhancement factor (AEF) of the overall doped shell. We show that the highest enhancement (11 in the visible and 7 in the near-infrared) is achieved by tuning either the dipolar or the quadrupolar particle resonance to the rare earth ion's excitation wavelength. Additionally, the calculated AEFs are compared to experimental data reported in the literature, obtained in similar conditions (plasmon mediated enhancement) or when a metal–RE energy transfer mechanism is…
Implantable Sensors Based on Gold Nanoparticles for Continuous Long-Term Concentration Monitoring in the Body.
2021
Implantable sensors continuously transmit information on vital values or biomarker concentrations in bodily fluids, enabling physicians to survey disease progression and monitor therapeutic success. However, currently available technologies still face difficulties with long-term operation and transferability to different analytes. We show the potential of a generalizable platform based on gold nanoparticles embedded in a hydrogel for long-term implanted biosensing. Using optical imaging and an intelligent sensor/reference-design, we assess the tissue concentration of kanamycin in anesthetized rats by interrogating our implanted sensor noninvasively through the skin. Combining a tissue-integ…
Rapid one-pot propargylamine synthesis by plasmon mediated catalysis with gold nanoparticles on ZnO under ambient conditions
2013
Surface plasmon excitation of gold nanoparticles on ZnO in the presence of an aldehyde, an amine and phenylacetylene led to rapid and selective formation of propargylamines with good yields (50-95%) at room temperature. Plasmon mediated catalysis is the best available route for this ternary coupling.
Au@MnO nanoflowers: hybrid nanocomposites for selective dual functionalization and imaging.
2010
Recently, the development of hybrid nanostructures consisting of various materials has attracted considerable interest. The assembly of different nanomaterials with specific optical, magnetic, or electronic properties to multicomponent composites can change and even enhance the properties of the individual constituents. Specifically tuning the structure and interface interactions within the nanocomposites has resulted in novel platforms of materials that may lead the way to various future technologies, such as synchronous biolabeling, protein separation and detection, heterogeneous catalysis, and multimodal imaging in biomedicine. Of the various kinds of nanomaterials, gold nanorods show an…
Atomically Precise Gold Nanoclusters: Towards an Optimal Biocompatible System from a Theoretical-Experimental Strategy.
2021
Potential biomedical applications of gold nanoparticles have increasingly been reported with great promise for diagnosis and therapy of several diseases. However, for such a versatile nanomaterial, the advantages and potential health risks need to be addressed carefully, as the available information about their toxicity is limited and inconsistent. Atomically precise gold nanoclusters (AuNCs) have emerged to overcome this challenge due to their unique features, such as superior stability, excellent biocompatibility, and efficient renal clearance. Remarkably, the elucidation of their structural and physicochemical properties provided by theory-experiment investigations offers exciting opport…
Tuning of an Optical Dimer Nanoantenna by Electrically Controlling Its Load Impedance
2009
International audience; Optical antennas are elementary units used to direct optical radiation to the nanoscale. Here we demonstrate an active control over individual antenna performances by an external electrical trigger. We find that by an in-plane command of an anisotropic load medium, the electromagnetic interaction between individual elements constituting an optical antenna can be controlled, resulting in a strong polarization and tuning response. An active command of the antenna is a prerequisite for directing light wave through the utilization of such a device.
Mechanical, degradation and drug-release behavior of nano-grained Fe-Ag composites for biomedical applications.
2018
Abstract An original fabrication route of high-strength bulk Fe-5Ag and Fe-10Ag nanocomposites with enhanced degradation rate is reported. Near fully dense materials with fine nanostructures and uniform distribution of Ag nanoparticles were obtained employing high energy attrition milling of Fe-Ag2O powder blends followed by cold sintering – high pressure consolidation at ambient temperature that allowed the retention of the nanoscale structure. Annealing in hydrogen flow at 550 °C resulted in enhanced ductility without coarsening the nanostructure. The strength in compression of Fe5Ag and Fe10Ag nanocomposites was several-fold higher than the values reported for similar composites with mic…