Search results for "methodologies"
showing 10 items of 2106 documents
District heating networks: enhancement of the efficiency
2019
International audience; During the decades the district heating's (DH) advantages (more cost-efficient heat generation and reduced air pollution) overcompensated the additional costs of transmission and distribution of the centrally produced thermal energy to consumers. Rapid increase in the efficiency of low-power heaters, development of separated low heat density areas in cities reduce the competitiveness of the large centralized DH systems in comparison with the distributed cluster-size networks and even local heating. Reduction of transmission costs, enhancement of the network efficiency by optimization of the design of the DH networks become a critical issue. The methodology for determ…
Optimization of 3-DOF Parallel Motion Devices for Low-Cost Vehicle Simulators
2017
Motion generation systems are becoming increasingly important in certain Virtual Reality (VR) applications, such as vehicle simulators. This paper deals with the analysis of the Inverse Kinematics (IK) and the reachable workspace of a three-degrees-of-freedom (3-DOF) parallel manipulator, proposing different transformations and optimizations in order to simplify its use with Motion Cueing Algorithms (MCA) for self-motion generation in VR simulators. The proposed analysis and improvements are performed on a 3-DOF heave-pitch-roll manipulator with rotational motors, commonly used for low-cost motion-based commercial simulators. The analysis has been empirically validated against a real 3-DOF …
LMI-based 2D-3D Registration: from Uncalibrated Images to Euclidean Scene
2015
International audience; This paper investigates the problem of registering a scanned scene, represented by 3D Euclidean point coordinates , and two or more uncalibrated cameras. An unknown subset of the scanned points have their image projections detected and matched across images. The proposed approach assumes the cameras only known in some arbitrary projective frame and no calibration or autocalibration is required. The devised solution is based on a Linear Matrix Inequality (LMI) framework that allows simultaneously estimating the projective transformation relating the cameras to the scene and establishing 2D-3D correspondences without triangulating image points. The proposed LMI framewo…
Adaptive Backstepping Control of Nonlinear Uncertain Systems With Quantized States
2019
This paper investigates the stabilization problem for uncertain nonlinear systems with quantized states. All states in the system are quantized by a static bounded quantizer, including uniform quantizer, hysteresis-uniform quantizer, and logarithmic-uniform quantizer as examples. An adaptive backstepping-based control algorithm, which can handle discontinuity, resulted from the state quantization and a new approach to stability analysis are developed by constructing a new compensation scheme for the effects of the state quantization. Besides showing the global ultimate boundedness of the system, the stabilization error performance is also established and can be improved by appropriately adj…
Advances in Practical Applications of Agents, Multi-Agent Systems, and Sustainability: The PAAMS Collection
2015
This volume presents the papers that have been accepted for the 2015 special sessions of the 13th International Conference on Practical Applications of Agents and Multi-Agent Systems, held at University of Salamanca, Spain, at 3rd-5th June, 2015: Agents Behaviours and Artificial Markets (ABAM); Agents and Mobile Devices (AM); Multi-Agent Systems and Ambient Intelligence (MASMAI); Web Mining and Recommender systems (WebMiRes); Learning, Agents and Formal Languages (LAFLang); Agent-based Modeling of Sustainable Behavior and Green Economies (AMSBGE); Emotional Software Agents (SSESA) and Intelligent Educational Systems (SSIES). The volume also includes the paper accepted for the Doctoral Conso…
Rotation estimation and vanishing point extraction by omnidirectional vision in urban environment
2012
International audience; Rotation estimation is a fundamental step for various robotic applications such as automatic control of ground/aerial vehicles, motion estimation and 3D reconstruction. However it is now well established that traditional navigation equipments, such as global positioning systems (GPSs) or inertial measurement units (IMUs), suffer from several disadvantages. Hence, some vision-based works have been proposed recently. Whereas interesting results can be obtained, the existing methods have non-negligible limitations such as a difficult feature matching (e.g. repeated textures, blur or illumination changes) and a high computational cost (e.g. analyze in the frequency domai…
Ant Colony Optimisation-Based Classification Using Two-Dimensional Polygons
2016
The application of Ant Colony Optimization to the field of classification has mostly been limited to hybrid approaches which attempt at boosting the performance of existing classifiers (such as Decision Trees and Support Vector Machines (SVM)) — often through guided feature reductions or parameter optimizations.
Vision based attitude and altitude estimation for UAVs in dark environments
2011
This paper presents a system dedicated to the real-time estimation of attitude and altitude for unmanned aerial vehicles (UAV) under low light and dark environment. This system consists in a fisheye camera, which allows to cover a large field of view (FOV), and a laser circle projector mounted on a fixed baseline. The approach, close to structured light systems, uses the geometrical information obtained by the projection of the laser circle onto the ground plane and perceived by the camera. We present a theoretical study of the system in which the camera is modelled as a sphere and show that the estimation of a conic on this sphere allows to obtain the attitude and the altitude of the robot…
Omnidirectional vision for UAV: applications to attitude, motion and altitude estimation for day and night conditions
2012
International audience; This paper presents the combined applications of omnidirectional vision featuring on its application to aerial robotics. Omnidirectional vision is first used to compute the attitude, altitude and motion not only in rural environment but also in the urban space. Secondly, a combination of omnidirectional and perspective cameras permits to estimate the altitude. Finally we present a stereo system consisting of an omnidirectional camera with a laser pattern projector enables to calculate the altitude and attitude during the improperly illuminated conditions to dark environments. We demonstrate that omnidirectional camera in conjunction with other sensors is suitable cho…
Visual contact with catadioptric cameras
2015
Abstract Time to contact or time to collision (TTC) is utmost important information for animals as well as for mobile robots because it enables them to avoid obstacles; it is a convenient way to analyze the surrounding environment. The problem of TTC estimation is largely discussed in perspective images. Although a lot of works have shown the interest of omnidirectional camera for robotic applications such as localization, motion, monitoring, few works use omnidirectional images to compute the TTC. In this paper, we show that TTC can be also estimated on catadioptric images. We present two approaches for TTC estimation using directly or indirectly the optical flow based on de-rotation strat…