Search results for "mice"

showing 10 items of 6027 documents

Myeloid Cell-Derived Reactive Oxygen Species Induce Epithelial Mutagenesis

2017

Increased oxidative stress has been suggested to initiate and promote tumorigenesis by inducing DNA damage and to suppress tumor development by triggering apoptosis and senescence. The contribution of individual cell types in the tumor microenvironment to these contrasting effects remains poorly understood. We provide evidence that during intestinal tumorigenesis, myeloid cell-derived H2O2 triggers genome-wide DNA mutations in intestinal epithelial cells to stimulate invasive growth. Moreover, increased reactive oxygen species (ROS) production in myeloid cells initiates tumor growth in various organs also in the absence of a carcinogen challenge in a paracrine manner. Our data identify an i…

0301 basic medicineCancer ResearchMyeloidDNA damageApoptosismedicine.disease_causeMice03 medical and health sciencesParacrine signallingmedicineAnimalsMyeloid Cellschemistry.chemical_classificationReactive oxygen speciesTumor microenvironmentChemistryEpithelial CellsHydrogen PeroxideCell BiologyMice Mutant StrainsCell biologyOxidative Stress030104 developmental biologymedicine.anatomical_structureOncologyMutagenesisMutationTumor necrosis factor alphaReactive Oxygen SpeciesCarcinogenesisOxidative stressDNA DamageSignal TransductionCancer Cell
researchProduct

Transcriptional Profiles and Stromal Changes Reveal Bone Marrow Adaptation to Early Breast Cancer in Association with Deregulated Circulating microRN…

2020

Abstract The presence of a growing tumor establishes a chronic state of inflammation that acts locally and systemically. Bone marrow responds to stress signals by expanding myeloid cells endowed with immunosuppressive functions, further fostering tumor growth and dissemination. How early in transformation the cross-talk with the bone marrow begins and becomes detectable in blood is unknown. Here, gene expression profiling of the bone marrow along disease progression in a spontaneous model of mammary carcinogenesis demonstrates that transcriptional modifications in the hematopoietic compartment occurred as early as preinvasive disease stages. The transcriptional profile showed downregulation…

0301 basic medicineCancer ResearchMyeloidStromal cellInflammationApoptosisBreast NeoplasmsBiologySettore MED/08 - Anatomia PatologicaCXCR403 medical and health sciencesMice0302 clinical medicineBone MarrowmedicineBiomarkers TumorTumor Cells CulturedAnimalsHumansCirculating MicroRNACell ProliferationMice Inbred BALB CInnate immune systemGene Expression ProfilingAcquired immune systemAdaptation PhysiologicalXenograft Model Antitumor AssaysGene Expression Regulation NeoplasticHaematopoiesis030104 developmental biologymedicine.anatomical_structureOncologyTrascriptional profiles early brest cancer microRNAs030220 oncology & carcinogenesisCancer researchFemaleBone marrowmedicine.symptomStromal CellsTranscriptomeCancer research
researchProduct

Nicotinamide Phosphoribosyltransferase Acts as a Metabolic Gate for Mobilization of Myeloid-Derived Suppressor Cells

2019

Abstract Cancer induces alteration of hematopoiesis to fuel disease progression. We report that in tumor-bearing mice the macrophage colony-stimulating factor elevates the myeloid cell levels of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD salvage pathway, which acts as negative regulator of the CXCR4 retention axis of hematopoietic cells in the bone marrow. NAMPT inhibits CXCR4 through a NAD/Sirtuin 1–mediated inactivation of HIF1α-driven CXCR4 gene transcription, leading to mobilization of immature myeloid-derived suppressor cells (MDSC) and enhancing their production of suppressive nitric oxide. Pharmacologic inhibition or myeloid-specific ablation …

0301 basic medicineCancer ResearchMyeloidmedicine.medical_treatmentNudeNicotinamide phosphoribosyltransferaseApoptosisColorectal NeoplasmInbred C57BLMicechemistry.chemical_compound0302 clinical medicineTumor Cells CulturedHematopoiesiNicotinamide PhosphoribosyltransferaseInbred BALB CMice Inbred BALB CCulturedbiologySarcomaTumor CellsHaematopoiesismedicine.anatomical_structureOncology030220 oncology & carcinogenesisSirtuinFemaleSarcoma ExperimentalColorectal NeoplasmsAnimals; Apoptosis; Cell Proliferation; Colorectal Neoplasms; Female; Hematopoiesis; Humans; Mammary Neoplasms Experimental; Mice; Mice Inbred BALB C; Mice Inbred C57BL; Mice Nude; Myeloid-Derived Suppressor Cells; NAD; Nicotinamide Phosphoribosyltransferase; Sarcoma Experimental; Signal Transduction; Tumor Cells Cultured; Xenograft Model Antitumor AssaysHumanSignal TransductionMice NudeExperimental03 medical and health sciencesmedicineMyeloid-Derived Suppressor CellAnimalsHumansCell ProliferationAnimalMyeloid-Derived Suppressor CellsMammary NeoplasmsApoptosiMammary Neoplasms ExperimentalImmunotherapyNADXenograft Model Antitumor AssaysHematopoiesisMice Inbred C57BL030104 developmental biologychemistrybiology.proteinCancer researchMyeloid-derived Suppressor CellNAD+ kinaseBone marrowCancer Research
researchProduct

Isolation, culture and analysis of adult subependymal neural stem cells

2016

Individual cells dissected from the subependymal neurogenic niche of the adult mouse brain proliferate in medium containing basic fibroblast growth factor (bFGF) and/or epidermal growth factor (EGF) as mitogens, to produce multipotent clonal aggregates called neurospheres. These cultures constitute a powerful tool for the study of neural stem cells (NSCs) provided that they allow the analysis of their features and potential capacity in a controlled environment that can be modulated and monitored more accurately than in vivo. Clonogenic and population analyses under mitogen addition or withdrawal allow the quantification of the self-renewing and multilineage potency of these cells and the id…

0301 basic medicineCancer ResearchNeurogenesisCellular differentiationBasic fibroblast growth factorPopulationCell Culture TechniquesBiologyMice03 medical and health scienceschemistry.chemical_compoundNeural Stem CellsEpendymaNeurosphereSubependymal zoneAnimalsHumanseducationMolecular BiologyNeuronseducation.field_of_studyNeurogenesisCell DifferentiationCell BiologyNeural stem cellCell biologyAdult Stem Cells030104 developmental biologychemistryImmunologyDevelopmental BiologyAdult stem cellDifferentiation
researchProduct

Multiple myeloma-derived exosomes are enriched of amphiregulin (AREG) and activate the epidermal growth factor pathway in the bone microenvironment l…

2019

Background Multiple myeloma (MM) is a clonal plasma cell malignancy associated with osteolytic bone disease. Recently, the role of MM-derived exosomes in the osteoclastogenesis has been demonstrated although the underlying mechanism is still unknown. Since exosomes-derived epidermal growth factor receptor ligands (EGFR) are involved in tumor-associated osteolysis, we hypothesize that the EGFR ligand amphiregulin (AREG) can be delivered by MM-derived exosomes and participate in MM-induced osteoclastogenesis. Methods Exosomes were isolated from the conditioned medium of MM1.S cell line and from bone marrow (BM) plasma samples of MM patients. The murine cell line RAW264.7 and primary human CD1…

0301 basic medicineCancer ResearchOsteoclastsPlasma cellInterleukin 8ExosomesLigandsMice0302 clinical medicineEpidermal growth factorOsteogenesisMultiple myelomaBone diseaseTumor MicroenvironmentEpidermal growth factor receptorbiologyChemistryAntibodies MonoclonalOsteoblastCell DifferentiationHematologylcsh:Diseases of the blood and blood-forming organslcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensErbB Receptorsmedicine.anatomical_structureOncology030220 oncology & carcinogenesislcsh:RC254-282Amphiregulin03 medical and health sciencesAmphiregulinOsteoclastCell Line TumormedicineCell AdhesionAnimalsHumansMolecular BiologyOsteoblastsEpidermal Growth Factorlcsh:RC633-647.5Epidermal growth factor receptorResearchMesenchymal stem cellInterleukin-8Mesenchymal Stem CellsMicrovesiclesExosome030104 developmental biologyRAW 264.7 CellsCancer researchbiology.protein
researchProduct

Morpho-functional study of vascular fluorochrome delivery to lung and liver metastases of Lewis lung carcinoma (3LL).

1991

The growth of 3LL liver and lung metastases related to Its vascular organization was studied by morphological and functional methods, using the Hoechst 33342 fluorescent DNA staining technique. Experimental liver and lung metastases were produced in syngeneic C57BL/6 mice by injection of 3LL tumor cells into a lateral tail vein or into the spleen, respectively. The resulting neoplasms were composed of large cells arranged in sheets with a thin irregularly distributed stroma. Scattered blood vessels with an open or closed lumen were observed within the tumor. Functional study of H33342 diffusion showed a single and reticular fluorescent pattern in liver metastases. In contrast, in lung meta…

0301 basic medicineCancer ResearchPathologymedicine.medical_specialtyLung NeoplasmsLumen (anatomy)SpleenMetastasisMice03 medical and health sciences0302 clinical medicineStromaParenchymamedicineAnimalsFluorescent DyesLung030102 biochemistry & molecular biologybusiness.industryCarcinomaLiver NeoplasmsLewis lung carcinomaGeneral Medicinemedicine.diseaseMice Inbred C57BLPerfusionMicroscopy Electronmedicine.anatomical_structureOncology030220 oncology & carcinogenesisReticular connective tissueBenzimidazolesbusiness
researchProduct

High-risk gastrointestinal stromal tumour (GIST) and synovial sarcoma display similar angiogenic profiles: a nude mice xenograft study

2016

Background: Gastrointestinal stromal tumour (GIST) is the most common primary mesenchymal tumour of the gastrointestinal tract. Spindle cell monophasic synovial sarcoma (SS) can be morphologically similar. Angiogenesis is a major factor for tumour growth and metastasis. Our aim was to compare the angiogenic expression profiles of high-risk GIST and spindle cell monophasic SS by histological, immunohistochemical and molecular characterisation of the neovascularisation established between xenotransplanted tumours and the host during the initial phases of growth in nude mice. Methods: The angiogenic profile of two xenotransplanted human soft-tissue tumours were evaluated in 15 passages in nude…

0301 basic medicineCancer ResearchPathologymedicine.medical_specialtynude mice xenograftStromal cellAngiogenesischemokinessynovial sarcomaMetastasisangiogenesis03 medical and health sciences0302 clinical medicineMonophasic Synovial SarcomaMedicineGiSTbusiness.industryResearchMesenchymal stem cellmedicine.diseaseSynovial sarcoma030104 developmental biologyOncology030220 oncology & carcinogenesisImmunohistochemistrybusinessGISTecancermedicalscience
researchProduct

HDAC1 and HDAC2 integrate the expression of p53 mutants in pancreatic cancer.

2015

Mutation of p53 is a frequent genetic lesion in pancreatic cancer being an unmet clinical challenge. Mutants of p53 have lost the tumour-suppressive functions of wild type p53. In addition, p53 mutants exert tumour-promoting functions, qualifying them as important therapeutic targets. Here, we show that the class I histone deacetylases HDAC1 and HDAC2 contribute to maintain the expression of p53 mutants in human and genetically defined murine pancreatic cancer cells. Our data reveal that the inhibition of these HDACs with small molecule HDAC inhibitors (HDACi), as well as the specific genetic elimination of HDAC1 and HDAC2, reduce the expression of mutant p53 mRNA and protein levels. We fur…

0301 basic medicineCancer ResearchProteasome Endopeptidase ComplexMutantHistone Deacetylase 2Histone Deacetylase 1Biologymedicine.disease_causeMolecular oncologyProto-Oncogene Proteins c-myc03 medical and health sciencesMicePancreatic cancerGeneticsmedicineAnimalsHumansRNA MessengerPromoter Regions GeneticMolecular BiologyRegulation of gene expressionMice KnockoutMutationWild typeCancerProto-Oncogene Proteins c-mdm2medicine.diseaseGenes p53HDAC13. Good healthGene Expression Regulation NeoplasticHistone Deacetylase InhibitorsPancreatic NeoplasmsDisease Models Animal030104 developmental biologyMutationCancer researchOncogene
researchProduct

Tumor-Associated Fibroblasts Promote HER2-Targeted Therapy Resistance through FGFR2 Activation

2020

AbstractPurpose:Despite the therapeutic success of existing HER2-targeted therapies, tumors invariably relapse. This study aimed at identifying new mechanisms responsible for HER2-targeted therapy resistance.Experimental Design:We have used a platform of HER2-targeted therapy–resistant cell lines and primary cultures of healthy and tumor-associated fibroblasts (TAF) to identify new potential targets related to tumor escape from anti-HER2 therapies.Results:We have shown that TAFs promote resistance to HER2-targeted therapies. TAFs produce and secrete high levels of FGF5, which induces FGFR2 activation in the surrounding breast cancer cells. FGFR2 transactivates HER2 via c-Src, leading to res…

0301 basic medicineCancer ResearchReceptor ErbB-2medicine.medical_treatmentMice NudeBreast NeoplasmsDrug resistanceTargeted therapy03 medical and health sciencesMice0302 clinical medicineBreast cancerCancer-Associated FibroblastsTrastuzumabCell Line TumorAntineoplastic Combined Chemotherapy ProtocolsmedicineNeoplasmAnimalsHumansReceptor Fibroblast Growth Factor Type 2skin and connective tissue diseasesneoplasmsbusiness.industryLapatinibTrastuzumabmedicine.diseaseXenograft Model Antitumor AssaysSurvival Rate030104 developmental biologyOncologyTumor EscapeApoptosisDrug Resistance Neoplasm030220 oncology & carcinogenesisCancer researchFemaleSignal transductionNeoplasm Recurrence Localbusinessmedicine.drugSignal Transduction
researchProduct

Persistent immune stimulation exacerbates genetically driven myeloproliferative disorders via stromal remodeling

2017

Abstract Systemic immune stimulation has been associated with increased risk of myeloid malignancies, but the pathogenic link is unknown. We demonstrate in animal models that experimental systemic immune activation alters the bone marrow stromal microenvironment, disarranging extracellular matrix (ECM) microarchitecture, with downregulation of secreted protein acidic and rich in cysteine (SPARC) and collagen-I and induction of complement activation. These changes were accompanied by a decrease in Treg frequency and by an increase in activated effector T cells. Under these conditions, hematopoietic precursors harboring nucleophosmin-1 (NPM1) mutation generated myeloid cells unfit for normal …

0301 basic medicineCancer ResearchStromal cellMyeloidMice TransgenicVascular RemodelingBiologyInbred C57BLTransgenicMice03 medical and health sciencesMyelogenousMyeloproliferative DisordersmedicineAnimalsHumansMyeloproliferative DisorderAnimals; Cell Proliferation; Humans; Mice; Mice Inbred C57BL; Mice Inbred CBA; Mice Transgenic; Myeloproliferative Disorders; Stromal Cells; Vascular Remodeling; Oncology; Cancer ResearchCell ProliferationMyeloproliferative DisordersAnimalStromal CellInbred CBANeutrophil extracellular trapsmedicine.diseaseMice Inbred C57BLHaematopoiesisLeukemia030104 developmental biologymedicine.anatomical_structureOncologyImmunologyMice Inbred CBABone marrowStromal CellsNucleophosminHuman
researchProduct