Search results for "micro-algue"

showing 3 items of 3 documents

Assessment of cross-flow filtration as microalgae harvesting technique prior to anaerobic digestion: Evaluation of biomass integrity and energy demand

2018

[EN] In the present study, the effect of cross-flow filtration (CFF) on the overall valorization of Chlorella spp. microalgae as biogas was assessed. The effect of CFF on microalgae cell integrity was quantified in terms of viability which was correlated with the anaerobic biodegradability. The viability dropped as the biomass concentration increased, whereas anaerobic biodegradability increased linearly with the viability reduction. It was hypothesized that a stress-induced release and further accumulation of organic polymers during CFF increased the flux resistance which promoted harsher shear-stress conditions. Furthermore, the volume reduction as the concentration increased entailed an …

filtration tangentielleEnvironmental Engineering020209 energymedia_common.quotation_subject[SDV]Life Sciences [q-bio]Anaerobic biodegradabilitydigestion anaérobieBiomassBioengineering02 engineering and technologyChlorellaEnergy balance010501 environmental sciences7. Clean energy01 natural sciencesAgricultural economicsValencianbilan énergétiqueintégrité cellulaireRegional developmentGratitude0202 electrical engineering electronic engineering information engineeringMicroalgaeHarvestingAnaerobiosisBiomassWaste Management and DisposalTECNOLOGIA DEL MEDIO AMBIENTE0105 earth and related environmental sciencesmedia_commonbioénergiemicro-algueEnergy demandRenewable Energy Sustainability and the EnvironmentCross-flow filtrationGeneral MedicinebiogazMicroalgae integritylanguage.human_languageAnaerobic digestionWork (electrical)13. Climate actionBiofuelscross-flow filtration;harvesting;microalgae integrity;anaerobic biodegradability;energy balance[SDE]Environmental ScienceslanguageChristian ministryBusinessFiltration
researchProduct

A systems-wide understanding of photosynthetic acclimation in algae and higher plants

2017

The ability of phototrophs to colonise different environments relies on robust protection against oxidative stress, a critical requirement for the successful evolutionary transition from water to land. Photosynthetic organisms have developed numerous strategies to adapt their photosynthetic apparatus to changing light conditions in order to optimise their photosynthetic yield, which is crucial for life on Earth to exist. Photosynthetic acclimation is an excellent example of the complexity of biological systems, where highly diverse processes, ranging from electron excitation over protein protonation to enzymatic processes coupling ion gradients with biosynthetic activity, interact on drasti…

0301 basic medicine[SDV.BIO]Life Sciences [q-bio]/BiotechnologyPhysiologyAcclimatizationContext (language use)PhD traininginterdisciplinary trainingPlant Science: Biochemistry biophysics & molecular biology [F05] [Life sciences]BiologyacclimationPhotosynthesisAcclimatizationModels Biologicalmodelling03 medical and health sciencesAlgaeChlorophytaapplication industrielle[SDV.BV]Life Sciences [q-bio]/Vegetal Biologymathematical modellingPhotosynthesis: Biochimie biophysique & biologie moléculaire [F05] [Sciences du vivant]biodiversitymodélisationmicro-alguePhototrophphotosynthetic systemEcologyNon-photochemical quenchingSystems Biologyacclimatation photosynthétiquephotosynthetic optimisationPlanktonPlantsanalyse rétrospectivebiology.organism_classificationindustrial applicationEuropean Training Network030104 developmental biologyAcclimation; European Training Network; PhD training; biodiversity; interdisciplinary training; mathematical modelling; microalgal cultivation; non-photochemical quenching; photosynthetic optimisationPhotosynthetic acclimationadaptation à la lumièremicroalgal cultivationappareil photosynthétiqueBiochemical engineeringnon-photochemical quenching
researchProduct

Investigating mixotrophic metabolism in the model diatom Phaeodactylum tricornutum.

2017

Diatoms are prominent marine microalgae, interesting not only from an ecological point of view, but also for their possible use in biotechnology applications. They can be cultivated in phototrophic conditions, using sunlight as the sole energy source. Some diatoms, however, can also grow in a mixotrophic mode, wherein both light and external reduced carbon contribute to biomass accumulation. In this study, we investigated the consequences of mixotrophy on the growth and metabolism of the pennate diatom Phaeodactylum tricornutum , using glycerol as the source of reduced carbon. Transcriptomics, metabolomics, metabolic modelling and physiological data combine to indicate that glycerol affect…

0301 basic medicineGlycerol[SDV.OT]Life Sciences [q-bio]/Other [q-bio.OT]LightMetabolic fluxBiologySettore BIO/19 - Microbiologia GeneralePhotosynthesisPhaeodactylum tricornutumGeneral Biochemistry Genetics and Molecular BiologyGlycerolipid03 medical and health sciencesNutrientmixotrophyBotanyMicroalgaeSettore BIO/04 - Fisiologia VegetaleMetabolomics[SDV.BV]Life Sciences [q-bio]/Vegetal Biology[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biologyphotosynthèse14. Life underwaterPhaeodactylum tricornutumBiomassTranscriptomicsmétabolismemicro-algueDiatomsphotosynthesisPhototrophmarine diatomsfungiCarbon metabolismLipid metabolismArticlesapproche omiquebiology.organism_classificationCarbonTriacylglycerol biosynthesis030104 developmental biologyDiatomBiomass productionLipid metabolismBiochemistryGeneral Agricultural and Biological SciencesEnergy sourcemetabolismMixotrophomics analyses
researchProduct