Search results for "microRNA."

showing 10 items of 574 documents

Six Serum miRNAs Fail to Validate as Myotonic Dystrophy Type 1 Biomarkers.

2016

Myotonic dystrophy type 1 (DM1) is an autosomal dominant genetic disease caused by expansion of a CTG microsatellite in the 3' untranslated region of the DMPK gene. Despite characteristic muscular, cardiac, and neuropsychological symptoms, CTG trinucleotide repeats are unstable both in the somatic and germinal lines, making the age of onset, clinical presentation, and disease severity very variable. A molecular biomarker to stratify patients and to follow disease progression is, thus, an unmet medical need. Looking for a novel biomarker, and given that specific miRNAs have been found to be misregulated in DM1 heart and muscle tissues, we profiled the expression of 175 known serum miRNAs in …

0301 basic medicineUntranslated regionMalePathologyPhysiologylcsh:MedicineArtificial Gene Amplification and ExtensionDiseaseBioinformaticsBiochemistryPolymerase Chain Reaction0302 clinical medicineTrinucleotide RepeatsMedicine and Health SciencesMyotonic Dystrophylcsh:ScienceMusculoskeletal SystemMultidisciplinaryMusclesHematologyMiddle Aged3. Good healthBody FluidsNucleic acidsBlotting SouthernBloodGenetic DiseasesBiomarker (medicine)AnatomyResearch ArticleAdultmusculoskeletal diseasesmedicine.medical_specialtyBiologyResearch and Analysis MethodsMyotonic dystrophy03 medical and health sciencesExtraction techniquesmicroRNAmedicineGeneticsHumansNon-coding RNAMolecular Biology TechniquesGeneMolecular BiologyClinical GeneticsBiology and life sciencesGene Expression Profilinglcsh:Rmedicine.diseaseRNA extractionGene regulationGene expression profilingMicroRNAs030104 developmental biologySkeletal MusclesRNAlcsh:QGene expressionAge of onset030217 neurology & neurosurgeryBiomarkersPLoS ONE
researchProduct

MicroRNAs miR-19, miR-340, miR-374 and miR-542 regulate MID1 protein expression.

2018

The MID1 ubiquitin ligase activates mTOR signaling and regulates mRNA translation. Misregulation of MID1 expression is associated with various diseases including midline malformation syndromes, cancer and neurodegenerative diseases. While this indicates that MID1 expression must be tightly regulated to prevent disease states specific mechanisms involved have not been identified. We examined miRNAs to determine mechanisms that regulate MID1 expression. MicroRNAs (miRNA) are small non-coding RNAs that recognize specific sequences in their target mRNAs. Upon binding, miRNAs typically downregulate expression of these targets. Here, we identified four miRNAs, miR-19, miR-340, miR-374 and miR-542…

0301 basic medicineUntranslated regionSmall interfering RNAPhysiologymetabolism [Microtubule Proteins]Alzheimer's DiseaseBiochemistryImmune PhysiologyMedicine and Health SciencesSmall interfering RNAsmetabolism [Transcription Factors]3' Untranslated RegionsImmune System ProteinsMultidisciplinarybiologyReverse Transcriptase Polymerase Chain ReactionMessenger RNAQRNuclear ProteinsNeurodegenerative DiseasesTranslation (biology)EnzymesUbiquitin ligaseCell biologyNucleic acidsNeurologyMicrotubule ProteinsMedicineOxidoreductasesLuciferasemetabolism [Nuclear Proteins]Research ArticleScienceUbiquitin-Protein LigasesImmunologyTransfectionResearch and Analysis MethodsReal-Time Polymerase Chain ReactionAntibodies03 medical and health sciencesMental Health and PsychiatrymicroRNAGeneticsHumansddc:610Non-coding RNAMolecular Biology TechniquesMolecular BiologyMessenger RNABiology and life sciencesThree prime untranslated regionHEK 293 cellsProteinsGene regulationphysiology [MicroRNAs]MicroRNAs030104 developmental biologyHEK293 CellsEnzymologybiology.proteinRNAProtein TranslationDementiaGene expressionTranscription FactorsMid1 protein human
researchProduct

The Challenging Riddle about the Janus-Type Role of Hsp60 and Related Extracellular Vesicles and miRNAs in Carcinogenesis and the Promises of Its Sol…

2021

Hsp60 is one of the most ancient and evolutionarily conserved members of the chaperoning system. It typically resides within mitochondria, in which it contributes to maintaining the organelle’s proteome integrity and homeostasis. In the last few years, it has been shown that Hsp60 also occurs in other locations, intracellularly and extracellularly, including cytosol, plasma-cell membrane, and extracellular vesicles (EVs). Consequently, non-canonical functions and interacting partners of Hsp60 have been identified and it has been realized that it is a hub molecule in diverse networks and pathways and that it is implicated, directly or indirectly, in the development of various pathological co…

0301 basic medicineanimal structuresBiologyMitochondrionmedicine.disease_causechaperonopathieslcsh:TechnologyChaperoninlcsh:Chemistry03 medical and health sciences0302 clinical medicinemicroRNAmedicineExtracellularGeneral Materials ScienceInstrumentationlcsh:QH301-705.5CarcinogenesichaperonotherapymiRNAFluid Flow and Transfer Processeslcsh:TProcess Chemistry and Technologyextracellular vesicle (EV)fungiGeneral EngineeringHsp60lcsh:QC1-999Computer Science ApplicationsCell biologyCytosol030104 developmental biologylcsh:Biology (General)lcsh:QD1-999lcsh:TA1-2040030220 oncology & carcinogenesisProteomeChaperonopathieHSP60Carcinogenesislcsh:Engineering (General). Civil engineering (General)carcinogenesislcsh:PhysicsApplied Sciences
researchProduct

ceRNA Network Regulation of TGF-β, WNT, FOXO, Hedgehog Pathways in the Pharynx of Ciona robusta

2021

The transforming growth factor-β (TGF-β) family of cytokines performs a multifunctional signaling, which is integrated and coordinated in a signaling network that involves other pathways, such as Wintless, Forkhead box-O (FOXO) and Hedgehog and regulates pivotal functions related to cell fate in all tissues. In the hematopoietic system, TGF-β signaling controls a wide spectrum of biological processes, from immune system homeostasis to the quiescence and self-renewal of hematopoietic stem cells (HSCs). Recently an important role in post-transcription regulation has been attributed to two type of ncRNAs: microRNAs and pseudogenes. Ciona robusta, due to its philogenetic position close to verte…

0301 basic medicineascidianpseudogenepseudogeneslcsh:ChemistryTransforming Growth Factor betaProtein Interaction MappingHomeostasisRNA-Seqlcsh:QH301-705.53' Untranslated RegionsSpectroscopyTissue homeostasisForkhead Box Protein O1Wnt signaling pathwayHigh-Throughput Nucleotide Sequencingvirus diseasesGeneral Medicinefemale genital diseases and pregnancy complicationsComputer Science ApplicationsCell biologyNGSStem cellTGF-βCell fate determinationBiologyCatalysisArticleInorganic ChemistryWNT03 medical and health sciencesmicroRNAAnimalsCell LineageHedgehog ProteinsTGF-Physical and Theoretical ChemistryMolecular BiologyHedgehogneoplasmsmiRNA030102 biochemistry & molecular biologyCompeting endogenous RNAOrganic ChemistryfungiComputational BiologyHematopoiesisWnt ProteinsMicroRNAs030104 developmental biologylcsh:Biology (General)lcsh:QD1-999Gene Expression RegulationImmune SystemPharynxFOXOCionaTransforming growth factorInternational Journal of Molecular Sciences
researchProduct

MicroRNAs Dysregulation and Metabolism in Multiple System Atrophy.

2019

Multiple system atrophy (MSA) is an adult onset, fatal disease, characterized by an accumulation of alpha-synuclein (α-syn) in oligodendroglial cells. MicroRNAs (miRNAs) are small non-coding RNAs involved in post-translational regulation and several biological processes. Disruption of miRNA-related pathways in the central nervous system (CNS) plays an important role in the pathogenesis of neurodegenerative diseases, including MSA. While the exact mechanisms underlying miRNAs in the pathogenesis of MSA remain unclear, it is known that miRNAs can repress the translation of messenger RNAs (mRNAs) that regulate the following pathogenesis associated with MSA: autophagy, neuroinflammation, α-syn …

0301 basic medicineautophagyalpha-synucleinCentral nervous systemmultiple system atrophyReviewBiologylcsh:RC321-571neuroinflammationPathogenesis03 medical and health scienceschemistry.chemical_compound0302 clinical medicineAtrophystomatognathic systemmicroRNAmental disordersmedicinelcsh:Neurosciences. Biological psychiatry. NeuropsychiatryNeuroinflammationAlpha-synucleinmicroRNAGeneral NeuroscienceAutophagyTranslation (biology)medicine.diseaseCell biologynervous system diseases030104 developmental biologymedicine.anatomical_structurechemistrynervous system030217 neurology & neurosurgeryNeuroscienceFrontiers in neuroscience
researchProduct

Finding the right biomarker for renal cell carcinoma (RCC): Nivolumab treatment induces the expression of specific peripheral lymphocyte microRNAs in…

2019

Abstract Background The variability of clinical response to immune checkpoint inhibitors in RCC patients makes necessary the discovery of predictive biomarkers for patient selection. Emerging evidence has revealed a multitude of silenced genes and deregulated signalling pathways. These findings point towards extensive microRNAs (miRNAs) regulation and imply epigenetic reprogramming as a key feature of RCC. The aim of this study was to analyze the peripheral lymphocyte miRNA expression profile in metastatic RCC patients undergoing nivolumab treatment, to identify a lymphocyte miRNA signature specifically expressed in patients with partial or complete response (RP; RC) >12 months. Methods miR…

0301 basic medicinebiologybusiness.industryMicroarray analysis techniquesLymphocyteHematologymedicine.disease03 medical and health sciences030104 developmental biology0302 clinical medicinemedicine.anatomical_structureOncologyRenal cell carcinoma030220 oncology & carcinogenesismicroRNAmedicinebiology.proteinCancer researchPTENBiomarker (medicine)NivolumabbusinessPI3K/AKT/mTOR pathwayAnnals of Oncology
researchProduct

MiR-24 induces chemotherapy resistance and hypoxic advantage in breast cancer

2017

// Giuseppina Roscigno 1, 2, * , Ilaria Puoti 1, 2, * , Immacolata Giordano 1 , Elvira Donnarumma 3 , Valentina Russo 1 , Alessandra Affinito 1 , Assunta Adamo 1 , Cristina Quintavalle 1, 2 , Matilde Todaro 4 , Maria dM Vivanco 5 , Gerolama Condorelli 1, 2 1 Department of Molecular Medicine and Medical Biotechnology, “Federico II” University of Naples, Naples, Italy 2 IEOS, CNR, Naples, Italy 3 IRCCS-SDN, Naples, Italy 4 Department of Pathobiology and Medical Biotechnology, University of Palermo, Palermo, Italy 5 CIC bioGUNE, Centre for Cooperative Research in Biosciences, Derio, Spain * These authors have contributed equally to the paper as first authors Correspondence to: Gerolama Condore…

0301 basic medicinecancer stem cellsApoptosisStem cell markermedicine.disease_causemicroRNAs Breast cancer Cancer stem cells BimL FIH1Mixed Function OxygenasesAntineoplastic Agent0302 clinical medicineCell MovementTumor Cells CulturedCell Self RenewalMixed Function OxygenaseBimLmicroRNACell HypoxiamicroRNAsGene Expression Regulation NeoplasticOncology030220 oncology & carcinogenesisNeoplastic Stem CellsFemaleBreast NeoplasmAdult stem cellHumanResearch PaperFIH1BimL; FIH1; breast cancer; cancer stem cells; microRNAsAntineoplastic AgentsBreast Neoplasms03 medical and health sciencesBreast cancerbreast cancerDownregulation and upregulationCancer stem cellmicroRNAmedicineBiomarkers TumorHumansCell Proliferationbusiness.industryCancer stem cellApoptosiRepressor Proteinmedicine.diseaseHypoxia-Inducible Factor 1 alpha SubunitMolecular medicineRepressor Proteins030104 developmental biologyDrug Resistance NeoplasmImmunologyCancer researchNeoplastic Stem CellCisplatinCarcinogenesisbusiness
researchProduct

Cancer Stem Cells in Thyroid Tumors: From the Origin to Metastasis

2020

Thyroid tumors are extremely heterogeneous varying from almost benign tumors with good prognosis as papillary or follicular tumors, to the undifferentiated ones with severe prognosis. Recently, several models of thyroid carcinogenesis have been described, mostly hypothesizing a major role of the thyroid cancer stem cell (TCSC) population in both cancer initiation and metastasis formation. However, the cellular origin of TCSC is still incompletely understood. Here, we review the principal epigenetic mechanisms relevant to TCSC origin and maintenance in both well-differentiated and anaplastic thyroid tumors. Specifically, we describe the alterations in DNA methylation, histone modifiers, and …

0301 basic medicinecancer stem cellsEndocrinology Diabetes and Metabolismthyroid tumors030209 endocrinology & metabolismTumor initiationReviewBiologymedicine.disease_causelcsh:Diseases of the endocrine glands. Clinical endocrinologyMetastasisHistones03 medical and health sciences0302 clinical medicineEndocrinologyCancer stem cellmedicineTumor MicroenvironmentHumansThyroid NeoplasmsNeoplasm MetastasisThyroid cancerTumor microenvironmentlcsh:RC648-665ThyroidCancerDNA Methylationmedicine.diseasemicroenvironmentMicroRNAsimmune system030104 developmental biologymedicine.anatomical_structureepigenetic alterationsCancer researchNeoplastic Stem CellsCarcinogenesis
researchProduct

Differential Expression Profiles and Functional Prediction of Circular RNAs in Pediatric Dilated Cardiomyopathy

2020

Circular RNAs (circRNAs) have emerged as essential regulators and biomarkers in various diseases. To assess the different expression levels of circRNAs in pediatric dilated cardiomyopathy (PDCM) and explore their biological and mechanistic significance, we used RNA microarrays to identify differentially expressed circRNAs between three children diagnosed with PDCM and three healthy age-matched volunteers. The biological function of circRNAs was assessed with a circRNA–microRNA (miRNA)–mRNA interaction network constructed from Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes. Differentially expressed circRNAs were validated by quantitative real-time polymerase chain reaction (qR…

0301 basic medicinecircular RNAs (circRNAs)gene expression profile (GEP)Microarray030204 cardiovascular system & hematologyBiologyBioinformaticsmedicine.disease_causeBiochemistry Genetics and Molecular Biology (miscellaneous)Biochemistrylaw.inventionAutoimmunity03 medical and health sciences0302 clinical medicinepediatric dilated cardiomyopathylawmicroRNAmedicineMolecular BiosciencesKEGGMolecular Biologylcsh:QH301-705.5Polymerase chain reactionOriginal ResearchRNAbiomarkersFold change030104 developmental biologylcsh:Biology (General)DNA microarraymicroarrayFrontiers in Molecular Biosciences
researchProduct

SNPs in bone-related miRNAs are associated with the osteoporotic phenotype

2017

AbstractBiogenesis and function of microRNAs can be influenced by genetic variants in the pri-miRNA sequences leading to phenotypic variability. This study aims to identify single nucleotide polymorphisms (SNPs) affecting the expression levels of bone-related mature microRNAs and thus, triggering an osteoporotic phenotype. An association analysis of SNPs located in pri-miRNA sequences with bone mineral density (BMD) was performed in the OSTEOMED2 cohort (n = 2183). Functional studies were performed for assessing the role of BMD-associated miRNAs in bone cells. Two SNPs, rs6430498 in the miR-3679 and rs12512664 in the miR-4274, were significantly associated with femoral neck BMD. Further, we…

0301 basic medicineconformation:Diseases::Wounds and Injuries::Fractures Bone::Hip Fractures [Medical Subject Headings]:Phenomena and Processes::Genetic Phenomena::Phenotype [Medical Subject Headings]Polimorfismo de nucleótido simpleGene ExpressionboneOsteoblastosDensidad ósea:Organisms::Eukaryota::Animals::Chordata::Vertebrates::Mammals::Primates::Haplorhini::Catarrhini::Hominidae::Humans [Medical Subject Headings]Cohort StudiesGene Frequencysingle nucleotide polymorphismBone DensityBone cellOssosgeneticsFracturas osteoporóticasCells CulturedGeneticsBone mineralMicroARNsMultidisciplinarymicroRNAbiologyQalleleR:Diseases::Wounds and Injuries::Fractures Bone::Osteoporotic Fractures [Medical Subject Headings]clinical trialMiddle Agedcohort analysisPhenotypeHumanosFenotipmedicine.anatomical_structureCancellous BoneosteoblastMedicine:Diseases::Musculoskeletal Diseases::Bone Diseases [Medical Subject Headings]:Phenomena and Processes::Genetic Phenomena::Genotype [Medical Subject Headings]:Anatomy::Cells::Connective Tissue Cells::Osteoblasts [Medical Subject Headings]AlelosFenotipomusculoskeletal diseasesmedicine.medical_specialtyGenotypeScienceSingle-nucleotide polymorphismBiologychemistryPolymorphism Single NucleotideArticleBone and Bones:Anatomy::Musculoskeletal System::Skeleton::Bone and Bones::Cancellous Bone [Medical Subject Headings]03 medical and health sciencesCalcification PhysiologicInternal medicinemicroRNAmedicineHumanshumanproceduresAllele:Phenomena and Processes::Genetic Phenomena::Genetic Structures::Genome::Genome Components::Genes::Alleles [Medical Subject Headings]AllelesFemoral neckGenetic associationAgedcell culture:Phenomena and Processes::Musculoskeletal and Neural Physiological Phenomena::Musculoskeletal Physiological Phenomena::Bone Density [Medical Subject Headings]:Phenomena and Processes::Genetic Phenomena::Genetic Variation::Polymorphism Genetic::Polymorphism Single Nucleotide [Medical Subject Headings]OsteoblastsEnfermedades óseasFracturas de caderaComputational BiologyCuello femoral:Chemicals and Drugs::Nucleic Acids Nucleotides and Nucleosides::Antisense Elements (Genetics)::RNA Antisense::MicroRNAs [Medical Subject Headings]MicroRNAs030104 developmental biologyEndocrinologymulticenter studybone mineralizationNucleic Acid ConformationOsteoporosispathology:Anatomy::Musculoskeletal System::Skeleton::Bone and Bones::Bones of Lower Extremity::Leg Bones::Femur::Femur Neck [Medical Subject Headings]TranscriptomemetabolismGenotipoFractures
researchProduct