Search results for "micromechanic"
showing 10 items of 64 documents
Brittle failure in polycrystalline RVEs by a grain-scale cohesive boundary element formulation
2013
Polycrystalline materials are commonly employed in engineering structures. For modern applica- tions a deep understanding of materials degradation is of crucial relevance. It is nowadays widely recognized that the macroscopic material properties depend on the microstructure. The polycrystalline microstructure is characterized by the features of the grains and by the phys- ical and chemical properties of the intergranular interfaces, that have a direct influence on the evolution of the microstructural damage. The experimental investigation of failure mechanisms in 3D polycrystals still remains a challenging task. A viable alternative, or complement, to the experiments is Computational Microm…
A multiscale approach to polycrystalline materials damage and failure
2015
A two-scale three-dimensional approach for degradation and failure in polycrystalline materials is presented. The method involves the component level and the grain scale. The damageinduced softening at the macroscale is modelled employing an initial stress boundary element approach. The microscopic degradation is explicitly modelled associating Representative Volume Elements (RVEs) to relevant points of the macro continuum and employing a cohesive-frictional 3D grain-boundary formulation to simulate intergranular degradation and failure in the Voronoi morphology. Macro-strains are downscaled as RVEs' periodic boundary conditions, while overall macro-stresses are obtained upscaling the micro…
Porosity effects on elastic properties of polycrystalline materials: a three-dimensional grain boundary formulation
2013
Polycrystalline materials are widely used in many technological applications of engineering interest. They constitute an important class of heterogeneous materials, and the investigation of the link between their macro and micro properties, main task of the micromechanics [1], is of relevant technological concern. The internal structure of a polycrystalline material is determined by the size and the shape of the grains, by their crystallographic orientation and by different type of defects within them. In this sense, the presence of internal voids, pores, is important to take into account in the determination of the polycrystalline aggregate properties. Porosity exists in almost all materia…
Intergranular damage and fracture in polycrystalline materials. A novel 3D microstructural grain-boundary formulation
2013
The design of advanced materials requires a deep understanding of degradation and failure pro- cesses. It is widely recognized that the macroscopic material properties depend on the features of the microstructure. The knowledge of this link, which is the main subject of Micromechanics [1], is of relevant technological interest, as it may enable the design of materials with specific requirements by means of suitable manipulations of the microstructure. Polycrystalline materials are used in many technological applications. Their microstructure is characterized by the grains morphology, size distribution, anisotropy, crystallographic orientation, stiffness and toughness mismatch and by the phy…
Polycrystalline materials with pores: effective properties through a boundary element homogenization scheme
2014
In this study, the influence of porosity on the elastic effective properties of polycrystalline materials is investigated using a formulation built on a boundary integral representation of the elastic problem for the grains, which are modeled as 3D linearly elastic orthotropic domains with arbitrary spatial orientation. The artificial polycrystalline morphology is represented using 3D Voronoi tessellations. The formulation is expressed in terms of intergranular fields, namely displacements and tractions that play an important role in polycrystalline micromechanics. The continuity of the aggregate is enforced through suitable intergranular conditions. The effective material properties are ob…
A Microstructural Model for Micro-Cracking in Piezoceramics
2018
Piezoelectric ceramics are employed in several applications for their capability to couple mechanical and electrical fields, which can be advantageously exploited for the implementation of smart functionalities. The electromechanical coupling, which can be employed for fast accurate micro-positioning devices, makes such materials suitable for application in micro electromechanical systems (MEMS). However, due to their brittleness, piezoceramics can develop damage leading to initiation of micro-cracks, affecting the performance of the material in general and the micro-devices in particular. For such reasons, the development of accurate and robust numerical tools is an important asset for the…
Optomechanical Two-Photon Hopping
2023
The hopping mechanism plays a key role in collective phenomena emerging in many-body physics. The ability to create and control systems that display this feature is important for next generation quantum technologies. Here we study two cavities separated by a vibrating two-sided perfect mirror and show that, within currently available experimental parameters, this system displays photon-pair hopping between the two electromagnetic resonators. In particular, the two-photon hopping is not due to tunneling, but rather to higher order resonant processes. Starting from the classical problem, where the vibrating mirror perfectly separates the two sides of the cavity, we quantize the system and the…
A computationally effective 3D Boundary Element Method for polycrystalline micromechanics
2015
An effective computational framework for homogenization and microcracking analysis of polycrystalline RVEs is presented. The method is based on a recently developed grain-boundary formulation for polycrystalline materials and several enhancements over the original technique are introduced to reduce the computational effort needed to model three-dimensional polycrystalline aggregates, which is highly desirable, especially in a multiscale perspective. First, a regularization scheme is used to remove pathological entities, usually responsible for unduly large mesh refinements, from Voronoi polycrystalline morphologies. Second, an improved meshing strategy is used, with an aim towards meshing r…
Effects of voids and flaws on the mechanical properties and on intergranular damage and fracture for polycrystalline materials
2013
It is widely recognized that the macroscopic material properties depend on the features of the microstructure. The understanding of the links between microscopic and macroscopic material properties, main topic of Micromechanics, is of relevant technological interest, as it may enable the deep understanding of the mechanisms governing materials degradation and failure. Polycrystalline materials are used in many engineering applications. Their microstructure is determined by distribution, size, morphology, anisotropy and orientation of the crystals. It worth noting that also the physical-chemical properties of the intergranular interfaces, as well as the presence of micro-imperfections within…
Virtual Element Method: Micro-Mechanics Applications
2020
In this contribution we present an application of the lowest order Virtual Element Method (VEM) to the problem of material computational homogenization. Material homogenization allows retrieving material properties through suitable volume averaging procedures, starting from a detailed representation of the micro-constituents of the considered material. The representation of such microstructure constitutes a remarkable effort in terms of data/mesh preparation, especially when there is not evident microstructural regularity. For such a reason, computational micromechanics may represent a challenging benchmark for showing the potential of VEM. In this contribution, polycrystalline materials ar…