Search results for "microorganisme"

showing 10 items of 107 documents

Nitric oxide: a multitask player in plant–microorganism symbioses

2016

Symbiosis is a close and often long-term interaction between two different biological organisms, i.e. plants or fungi and microorganisms. Two main types of plant–microorganism interactions, mutualistic and cooperative, have been categorized. Mutualistic interactions, including nitrogen-fixing and mycorrhizal symbioses, refer to mostly obligate relationships between a host plant and a symbiont microorganism. Cooperative interactions correspond to less obligate and specific relationships. They involve microorganisms, referred to as plant growth-promoting rhizobia (PGPR), able to colonize root surface or inner tissues. Lichens are symbiotic associations of host fungi and photosynthetic partner…

0106 biological sciences0301 basic medicineMicroorganism[SDV]Life Sciences [q-bio]LichenBiology01 natural sciencesRhizobia03 medical and health sciencesinteraction microorganisme végétalSymbiosisNitrogen fixationnitric oxideBotanyPlant symbiosisMycorrhizamicrobiologieLichenoxyde nitriqueObligateEcologyHost (biology)fungifood and beveragesbiology.organism_classificationsymbiosisLegume030104 developmental biologyNitrogen fixationPlant growth-promoting rhizobia (PGPR)MycorrhizasymbioseLegume Lichen Mycorrhiza Nitric oxide Nitrogen fixation Plant growth-promoting rhizobia (PGPR) Plant symbiosis Rhizobium010606 plant biology & botanyRhizobium
researchProduct

Database of diazotrophs in global ocean: abundance, biomass and nitrogen fixation rates

2012

Marine N<sub>2</sub> fixing microorganisms, termed diazotrophs, are a key functional group in marine pelagic ecosystems. The biological fixation of dinitrogen (N<sub>2</sub>) to bioavailable nitrogen provides an important new source of nitrogen for pelagic marine ecosystems and influences primary productivity and organic matter export to the deep ocean. As one of a series of efforts to collect biomass and rates specific to different phytoplankton functional groups, we have constructed a database on diazotrophic organisms in the global pelagic upper ocean by compiling about 12 000 direct field measurements of cyanobacterial diazotroph abundances (based on microscopic …

0106 biological sciencesBiogeochemical cyclePHYTOPLANCTON010504 meteorology & atmospheric sciencesPRODUCTION PRIMAIREFONCTIONNEMENT DE L'ECOSYSTEMEBiologycomputer.software_genre01 natural sciencesDeep seaABONDANCEAbundance (ecology)PhytoplanktonEcosystem14. Life underwaterlcsh:Environmental sciences0105 earth and related environmental scienceslcsh:GE1-350Biomass (ecology)BIOMASSEDatabase010604 marine biology & hydrobiologyFIXATION BIOLOGIQUE DE L'AZOTElcsh:QE1-996.5MICROORGANISMEPelagic zoneBASE DE DONNEESlcsh:GeologyOceanography13. Climate action[SDU]Sciences of the Universe [physics]MILIEU MARINNitrogen fixationGeneral Earth and Planetary Sciencescomputer
researchProduct

The potential of nonpathogenic Fusarium oxysporum and other biological control organisms for suppressing fusarium wilt of banana

2006

Publication Inra prise en compte dans l'analyse bibliométrique des publications scientifiques mondiales sur les Fruits, les Légumes et la Pomme de terre. Période 2000-2012. http://prodinra.inra.fr/record/256699; The aim of this study was to evaluate the ability of nonpathogenic F. oxysporum and Trichoderma isolates from suppressive soils in South Africa to suppress fusarium wilt of banana in the glasshouse. Several biological control agents and commercial biological control products were included in the study. The isolates were first screened in vitro on potato dextrose agar. In glasshouse evaluations, the fungal and bacterial isolates were established on banana roots before they were repla…

0106 biological sciencesCUBENSESOIL RHIZOSPHERE[SDV]Life Sciences [q-bio]Biological pest controlPseudomonas fluorescensPlant ScienceHorticultureBiology01 natural sciencesmicroorganisme du sol03 medical and health sciencesFusarium oxysporumBotanyGeneticsFUSARIUM OXYSPORUM F.S.P.030304 developmental biology2. Zero hunger0303 health sciencesCOMMERCIAL BIOLOGICAL CONTROL PRODUCTSSUPPRESSIVE SOILSfood and beveragesTRICHODERMA SPP.Fungi imperfectibiology.organism_classificationFusarium wiltMusaceaePSEUDOMONAS FLUORESCENSHorticultureTrichoderma[SDE]Environmental SciencesPotato dextrose agarAgronomy and Crop Science010606 plant biology & botany
researchProduct

Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana.

2007

Taking into account the strong iron competition in the rhizosphere and the high affinity of pyoverdines for Fe(III), these molecules are expected to interfere with the iron nutrition of plants, as they do with rhizospheric microbes. The impact of Fe-pyoverdine on iron content of Arabidopsis thaliana was compared with that of Fe-EDTA. Iron chelated to pyoverdine was incorporated in a more efficient way than when chelated to EDTA, leading to increased plant growth of the wild type. A transgenic line of A. thaliana overexpressing ferritin showed a higher iron content than the wild type when supplemented with Fe-EDTA but a lower iron content when supplemented with Fe-pyoverdine despite its inc…

0106 biological sciencesChlorophyll[ SDV.BV ] Life Sciences [q-bio]/Vegetal BiologyFMN ReductasePhysiologyIronArabidopsisReductasePseudomonas fluorescens01 natural sciencesPlant Roots03 medical and health scienceschemistry.chemical_compoundFMN reductaseArabidopsis thaliana[SDV.BV]Life Sciences [q-bio]/Vegetal Biology[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyChelationRELATION PLANTE-MICROORGANISMECation Transport ProteinsEdetic Acid030304 developmental biology0303 health sciencesPyoverdinebiologyArabidopsis ProteinsACLWild typeARABIDOPSIS THALIANAGeneral Medicinebiology.organism_classificationPlants Genetically ModifiedFerritinchemistryBiochemistryChlorophyllFerritinsbiology.proteinAgronomy and Crop ScienceOligopeptides010606 plant biology & botany
researchProduct

Isolation and characterization of nonpathogenic Fusarium oxysporum isolates from the rhizosphere of healthy banana plants

2006

Publication Inra prise en compte dans l'analyse bibliométrique des publications scientifiques mondiales sur les Fruits, les Légumes et la Pomme de terre. Période 2000-2012. http://prodinra.inra.fr/record/256699; One of the most serious diseases of banana is fusarium wilt, caused by Fusarium oxysporum f.sp. cubense (Foc). The objectives of this study were to isolate and identify nonpathogenic F. oxysporum strains from soils suppressive to banana wilt, and to determine the diversity of these isolates. More than 100 Fusarium strains were isolated from the rhizosphere of banana plants and identified to species level. Pathogenicity testing was carried out to confirm that these isolates were nonp…

0106 biological sciencesFusariumVeterinary medicinePanama disease[SDV]Life Sciences [q-bio]biological controlPlant ScienceHorticulture01 natural sciencesHaeIII03 medical and health sciencesFusarium oxysporumBotanyGeneticsmedicineRELATION PLANTE-MICROORGANISME030304 developmental biology2. Zero hunger0303 health sciencesRhizospheresuppressive soilsbiologyfusarium wilt of bananaBANANIERpanama diseasefood and beveragesFungi imperfectibiology.organism_classificationFusarium wilt[SDE]Environmental SciencesRestriction fragment length polymorphismAgronomy and Crop Science010606 plant biology & botanymedicine.drugPlant Pathology
researchProduct

III. Biochemistry of S-layers

1997

During evolution prokaryotes have developed different envelope structures exterior to the cell wall proper. Among these surface components are regularly arranged S-layers and capsules. The structural characterization and the detailed chemical analysis of these surface molecules is a prerequisite to understand their biosynthesis and functional role(s) at the molecular level. Of particular interest are the glycosylated S-layer proteins which belong to the first prokaryotic glycoproteins ever described. Their characterization was performed on strains belonging to the thermophilic Bacillaceae and included structural studies and experiments to learn about the pathways for the glycan biosynthesis…

0106 biological sciencesGlycansurface cellulairecapsuleElectrospray ionization[SDV]Life Sciences [q-bio]macromoléculeMass spectrometry01 natural sciencesMicrobiologystructure moléculaire03 medical and health sciencesspectrométrie de masse010608 biotechnologyComputingMilieux_MISCELLANEOUS030304 developmental biologyglycoprotéinechemistry.chemical_classification0303 health sciencesmicroorganismebiologyPolyglutamate030306 microbiologyChemistrypolyglutamatebiology.organism_classificationInfectious DiseasesNatronococcusBiochemistrybiology.proteinCell envelopeGlycoproteinS-layer
researchProduct

Colonization of adventitious roots ofMedicago truncatulabyPseudomonas fluorescensC7R12 as affected by arbuscular mycorrhiza

2008

Pseudomonas fluorescens C7R12 was previously shown to promote colonization of Medicago truncatula roots by Glomus mosseae BEG12. To gain more insight into the interaction between C7R12 and BEG12, the cell organization of C7R12 was characterized on adventitious roots mycorrhized or not with BEG12 and on extraradical hyphae. Bacterial cell observations were made using the immuno-fluorescence technique and confocal laser scanning microscopy. Five types of cell organization, so-called organization types (OT), were identified: small or large single cells, cells by pair and cells in microcolonies or in strings. The frequencies of each OT on the roots were expressed as the percentage of observatio…

0106 biological sciencesHyphaARBUSCULAR MYCORRHIZAPseudomonas fluorescensPlant Roots01 natural sciencesMicrobiologyIMMUNOLOCALIZATIONGlomeromycotaMycorrhizaeBotanyGeneticsColonizationRELATION PLANTE-MICROORGANISMEGlomeromycotaMolecular BiologySoil MicrobiologyGlomusMedicagobiologyGLOMUS MOSSEAE1. No poverty04 agricultural and veterinary sciencesbiology.organism_classificationMedicago truncatulaPSEUDOMONAS FLUORESCENSArbuscular mycorrhiza[SDV.MP]Life Sciences [q-bio]/Microbiology and Parasitology040103 agronomy & agriculture0401 agriculture forestry and fisheriesMEDICAGO TRUNCATULAROOT COLONIZATION010606 plant biology & botanyFEMS Microbiology Letters
researchProduct

Are grapevine stomata involved in the elicitor-induced protection against downy mildew?

2009

Stomata, natural pores bordered by guard cells, regulate transpiration and gas exchanges between plant leaves and the atmosphere. These natural openings also constitute a way of penetration for microorganisms. In plants, the perception of potentially pathogenic microorganisms or elicitors of defense reactions induces a cascade of events, including H2O2 production, that allows the activation of defense genes, leading to defense reactions. Similar signaling events occur in guard cells in response to the perception of abscisic acid (ABA), leading to stomatal closure. Moreover, few elicitors were reported to induce stomatal closure in Arabidopsis and Vicia faba leaves. Because responses to ABA…

0106 biological sciencesLightPhysiologychampignon phytopathogènestomate01 natural sciencesréaction de défense03 medical and health sciencesPathosystemchemistry.chemical_compoundvitis viniferaArabidopsisGuard cellBotanyVitis[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyRELATION PLANTE-MICROORGANISMERELATION PLANTE-MICROORGANISME;RELATION HOTE-PARASITEAbscisic acid030304 developmental biologyTranspirationRELATION HOTE-PARASITE0303 health sciencesbiologyéliciteurfungifood and beveragesGeneral MedicineHydrogen Peroxidebiology.organism_classificationImmunity InnateElicitorPlant LeaveschemistryOomycetesmildiouPlasmopara viticolaPlant StomataDowny mildewvigneReactive Oxygen SpeciesAgronomy and Crop Science010606 plant biology & botanyAbscisic Acid
researchProduct

Multitrophic interactions in the rhizosphere Rhizosphere microbiology: at the interface of many disciplines and expertises.

2008

The rhizosphere – the soil compartment influenced by the root, including the root itself – is the most-active microbial habitat in soils. Indeed, the release by plant roots of a significant part of their photosynthates promotes microbial abundance and activities in the rhizosphere. This investment made by plants is paid back by microbial functions, which contribute to plant nutrition and protection against soil-borne diseases. Indeed, rhizosphere microorganisms play a major role in plant growth and health and, …

0106 biological sciencesPlant growthMICROBIOLOGYMicroorganismPLANT ZOOLOGYBiology01 natural sciencesApplied Microbiology and BiotechnologyPlant RootsBotanyMICROBIAL COMMUNITIESRELATION PLANTE-MICROORGANISMEMolecular BiologyComputingMilieux_MISCELLANEOUSEcosystemPlant Physiological PhenomenaSoil Microbiology2. Zero hungerRhizosphereMicroscopyEcologyPlant rootsEcologyfungiSignificant partfood and beveragesRHIZOSPHERE04 agricultural and veterinary sciencesPLANT PATHOLOGY15. Life on landPlantsPLANT PHYSIOLOGY[SDV.MP]Life Sciences [q-bio]/Microbiology and ParasitologySoil water040103 agronomy & agriculture0401 agriculture forestry and fisheriesPhyllospherePlant nutrition010606 plant biology & botanyFEMS microbiology ecology
researchProduct

Transcription of two blue copper-binding protein isogenes is highly correlated with arbuscular mycorrhizal development in Medicago truncatula.

2010

International audience; Expression profiling of two paralogous arbuscular mycorrhizal (AM)-specific blue copper-binding gene (MtBcp1a and MtBcp1b) isoforms was performed by real-time quantitative polymerase chain reaction in wild-type Medicago truncatula Jemalong 5 (J5) during the mycorrhizal development with Glomus intraradices for up to 7 weeks. Time-course analysis in J5 showed that expression of both MtBcp1 genes increased continuously and correlated strongly with the colonization intensity and arbuscule content. MtPT4, selected as a reference gene of the functional plant-fungus association, showed a weaker correlation to mycorrhizal development. In a second experiment, a range of mycor…

0106 biological sciencesTranscription GeneticPhysiologyGLOMUS INTRARADICESMutantMolecular Sequence Data01 natural sciences03 medical and health sciencesTranscription (biology)Gene Expression Regulation PlantBLUE COPPER-BINDINGMYCRORHIZE ARBUSCULAIREMycorrhizaeGene expressionBotanyMedicago truncatulaProtein Isoforms[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyRELATION PLANTE-MICROORGANISMEMycorrhizaGenePhylogeny030304 developmental biologyPlant Proteins2. Zero hunger0303 health sciencesbiologyfungiGeneral Medicinebiology.organism_classificationMolecular biologyMedicago truncatulaGene expression profilingReal-time polymerase chain reactionCarrier ProteinsAgronomy and Crop Science010606 plant biology & botanyMolecular plant-microbe interactions : MPMI
researchProduct