Search results for "microphysics"
showing 10 items of 49 documents
Vertical profiles of light absorption and scattering associated with black carbon particle fractions in the springtime Arctic above 79° N
2020
Despite the potential importance of black carbon (BC) for radiative forcing of the Arctic atmosphere, vertically resolved measurements of the particle light scattering coefficient (σsp) and light absorption coefficient (σap) in the springtime Arctic atmosphere are infrequent, especially measurements at latitudes at or above 80∘ N. Here, relationships among vertically distributed aerosol optical properties (σap, σsp and single scattering albedo or SSA), particle microphysics and particle chemistry are examined for a region of the Canadian archipelago between 79.9 and 83.4∘ N from near the surface to 500 hPa. Airborne data collected during April 2015 are combined with gro…
The temperature dependence of ice-nucleating particle concentrations affects the radiative properties of tropical convective cloud systems
2021
Convective cloud systems in the maritime tropics play a critical role in global climate, but accurately representing aerosol interactions within these clouds persists as a major challenge for weather and climate modelling. We quantify the effect of ice-nucleating particles (INPs) on the radiative properties of a complex tropical Atlantic deep convective cloud field using a regional model with an advanced double-moment microphysics scheme. Our results show that the domain-mean daylight outgoing radiation varies by up to 18 W m−2 depending on the chosen INP parameterisation. The key distinction between different INP parameterisations is the temperature dependence of ice formation, which alter…
Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity
2014
Many of the next generation of global climate models will include aerosol schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical properties and cloud condensation nuclei (CCN) concentrations to be determined by fundamental aerosol processes, which should lead to a more physically based simulation of aerosol direct and indirect radiative forcings. This study examines the global variation in particle size distribution simulated by 12 global aerosol microphysics models to quantify model diversity and to identify any common biases against observations. Evaluation against size distribution measurements from…
The challenge of simulating the sensitivity of the Amazonian clouds microstructure to cloud condensation nuclei number concentrations
2019
The realistic representation of cloud-aerosol interactions is of primary importance for accurate climate model projections. The investigation of these interactions in strongly contrasting clean and polluted atmospheric conditions in the Amazon area has been one of the motivations for several field observations, including the airborne Aerosol, Cloud, Precipitation, and Radiation Interactions and DynamIcs of CONvective cloud systems – Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM (Global Precipitation Measurement) (ACRIDICON-CHUVA) campaign based in Manaus, Brazil in September 2014. In this work we combine in situ …
Holographic Observations of Centimeter-Scale Nonuniformities within Marine Stratocumulus Clouds
2020
Abstract Data collected with a holographic instrument [Holographic Detector for Clouds (HOLODEC)] on board the High-Performance Instrumented Airborne Platform for Environmental Research Gulfstream-V (HIAPER GV) aircraft from marine stratocumulus clouds during the Cloud System Evolution in the Trades (CSET) field project are examined for spatial uniformity. During one flight leg at 1190 m altitude, 1816 consecutive holograms were taken, which were approximately 40 m apart with individual hologram dimensions of 1.16 cm × 0.68 cm × 12.0 cm and with droplet concentrations of up to 500 cm−3. Unlike earlier studies, minimally intrusive data processing (e.g., bypassing calculation of number concen…
Reply to a comment by R. Brown on ‘a numerical model of the cloud‐topped planetary boundary‐layer: Radiation, turbulence and spectral microphysics in…
1997
A Theoretical Study of the Wet Removal of Atmospheric Pollutants. Part V: The Uptake, Redistribution, and Deposition of (NM4)4SO4by a Convective Clou…
1995
Abstract The effects of an ice phase on the wet deposition of aerosol particles was studied by means of the authors’ 2D cloud dynamics model with spectral microphysics applied to the Cooperative Convective Precipitation Experiment in Miles City, Montana, on 19 July 1981. The cloud macrostructure as well as the cloud microstructure simulated by the model was found to agree well with observations. Although no on-site observations were available with respect to the chemical composition of the cloud and rain water, the values predicted by the model compared well with typical nearby measurements. The following conclusions can be derived from the model computations: (1) In confirmation of the aut…
Simulation of a biomass-burning plume: Comparison of model results with observations
2002
[1] We have simulated the dynamical evolution of the plume from a prescribed biomass fire, using the active tracer high- resolution atmospheric model (ATHAM). Initialization parameters were set to reflect the conditions during the fire. The model results are compared with airborne remote-sensing and in situ measurements of the plume. ATHAM reproduces the injection height (250-600 m) and the horizontal extent of the plume (similar to4 km) with good accuracy. The aerosol mass concentrations are underestimated but still in the range of the observations. Remaining differences between the model results and the measurements are attributed to limited meteorological and fire emission information. A…
Ice supersaturations and cirrus cloud crystal numbers
2009
Upper tropospheric observations outside and inside of cirrus clouds indicate water vapour mixing ratios sometimes exceeding water saturation. Relative humidities over ice (RHice) of up to and more than 200% have been reported from aircraft and balloon measurements in recent years. From these observations a lively discussion continues on whether there is a lack of understanding of ice cloud microphysics or whether the water measurements are tainted with large uncertainties or flaws. Here, RHice in clear air and in ice clouds is investigated. Strict quality-checked aircraft in situ observations of RHice were performed during 28 flights in tropical, mid-latitude and Arctic field experiments in…
In situ observation of new particle formation (NPF) in the tropical tropopause layer of the 2017 Asian monsoon anticyclone - Part 2: NPF inside ice c…
2021
From 27 July to 10 August 2017, the airborne StratoClim mission took place in Kathmandu, Nepal, where eight mission flights were conducted with the M-55 Geophysica up to altitudes of 20 km. New particle formation (NPF) was identified by the abundant presence of nucleation-mode aerosols, with particle diameters dp smaller than 15 nm, which were in-situ-detected by means of condensation nuclei (CN) counter techniques. NPF fields in clear skies as well as in the presence of cloud ice particles (dp > 3 µm) were encountered at upper troposphere–lowermost stratosphere (UTLS) levels and within the Asian monsoon anticyclone (AMA). NPF-generated nucleation-mode particles in elevated concentration…