Search results for "microrheology"
showing 10 items of 12 documents
Coping with the climate: cuticular hydrocarbon acclimation of ants under constant and fluctuating conditions
2018
International audience; Terrestrial arthropods achieve waterproofing by a layer of cuticular hydrocarbons (CHCs). At the same time, CHCs also serve as communication signals. To maintain waterproofing under different climate conditions, insects adjust the chemical composition of their CHC layer, but this may affect the communication via CHCs. The detailed acclimatory changes of CHCs and how these influence their physical properties are still unknown. Here, we studied acclimation in two closely related ant species with distinct CHC profiles, Myrmica rubra and Myrmica ruginodis, in response to constant or fluctuating temperature and humidity regimes. We measured how acclimation affected CHC co…
Communication versus waterproofing: the physics of insect cuticular hydrocarbons
2019
Understanding the evolution of complex traits is among the major challenges in biology. One such trait is the cuticular hydrocarbon (CHC) layer in insects. It protects against desiccation and provides communication signals, especially in social insects. CHC composition is highly diverse within and across species. To understand the adaptive value of this chemical diversity, we must understand how it affects biological functionality. So far, CHCs received ample research attention, but their physical properties were little studied. We argue that these properties determine their biological functionality, and are vital to understand how CHC composition affects their adaptive value. We investigat…
Data from: Coping with the climate: cuticular hydrocarbon acclimation of ants under constant and fluctuating conditions
2018
Terrestrial arthropods achieve waterproofing by a layer of cuticular hydrocarbons (CHCs). At the same time, CHCs also serve as communication signals. To maintain waterproofing under different climate conditions, insects adjust the chemical composition of their CHC layer, but this may affect the communication via CHC. The detailed acclimatory changes of CHCs and how these influence their physical properties are still unknown. Here, we studied acclimation in two closely related ant species with distinct CHC profiles, Myrmica rubra and Myrmica ruginodis, in response to constant or fluctuating temperature and humidity regimes. We measured how acclimation affected CHC composition and viscosity, …
2021
Fluctuation–dissipation relations or “theorems” (FDTs) are fundamental for statistical physics and can be rigorously derived for equilibrium systems. Their applicability to non-equilibrium systems is, however, debated. Here, we simulate an active microrheology experiment, in which a spherical colloid is pulled with a constant external force through a fluid, creating near-equilibrium and far-from-equilibrium systems. We characterize the structural and dynamical properties of these systems, and reconstruct an effective generalized Langevin equation (GLE) for the colloid dynamics. Specifically, we test the validity of two FDTs: The first FDT relates the non-equilibrium response of a system to …
Force-induced diffusion in microrheology
2012
We investigate the force-induced diffusive motion of a tracer particle inside a glass-forming suspension when a strong external force is applied to the probe (active nonlinear microrheology). A schematic model of mode-coupling theory introduced recently is extended to describe the transient dynamics of the probe particle, and used to analyze recent molecular-dynamics simulation data. The model describes non-trivial transient displacements of the probe before a steady-state velocity is reached. The external force also induces diffusive motion in the direction perpendicular to its axis. We address the relation between the transverse diffusion coefficient D(perpendicular) and the force-depende…
Microrheology of erythrocytes and platelets: physiological basis and consequences for the design and the operation of extracorporeal circulatory devi…
1976
Publisher Summary This chapter discusses the physiological basis and consequences for the design and the operation of extracorporeal circulatory devices. The microrheological response of erythrocytes and thrombocytes can be observed microscopically under simplified flow conditions in the rheoscope. In this device, cells are observed at high magnifications while being subjected to quantifiable shear stresses. Despite the unphysiological environment, the use of this method allowed an important extrapolation to well-established in vivo flow properties and a clear distinction between the primarily passive microrheological properties of the erythrocytes and the microrheological features of throm…
Magnetic microrods as a tool for microrheology
2015
International audience; Dynamics of superparamagnetic rods in crossed constant and alternating magnetic fields as a function of field frequency are studied and it is shown that above the critical value of the amplitude of the alternating field the rod oscillates around the direction of the alternating field. The fit of the experimentally measured time dependence of the mean orientation angle of the rod allows one to determine the ratio of magnetic and viscous torques which act on the rod. The protocol of microrheological measurements consists of recording the dynamics of the orientation of the rod when the magnetic field is applied at an angle to the rod and observing its relaxation due to …
Active nonlinear microrheology in a glass-forming Yukawa fluid.
2012
A molecular dynamics computer simulation of a glass-forming Yukawa mixture is used to study the anisotropic dynamics of a single particle pulled by a constant force. Beyond linear response, a scaling regime is found where a force-temperature superposition principle of a Peclet number holds. In the latter regime, the diffusion dynamics perpendicular to the force can be mapped on the equilibrium dynamics in terms of an effective temperature, whereas parallel to the force a superdiffusive behavior is seen in the long-time limit. This behavior is associated with a hopping motion from cage to cage and can be qualitatively understood by a simple trap model.
Magnetic wire-based sensors for the micro-rheology of complex fluids
2013
We propose a simple micro-rheology technique to evaluate the viscoelastic properties of complex fluids. The method is based on the use of magnetic wires of a few microns in length submitted to a rotational magnetic field. In this work, the method is implemented on a surfactant wormlike micellar solution that behaves as an ideal Maxwell fluid. With increasing frequency, the wires undergo a transition between a steady and a hindered rotation regime. The study shows that the average rotational velocity and the amplitudes of the oscillations obey scaling laws with well-defined exponents. From a comparison between model predictions and experiments, the rheological parameters of the fluid are det…
Discontinuous thinning in active microrheology of soft complex matter
2016
Employing theory and numerical simulations, we demonstrate discontinuous force thinning due to the driven motion of an external probe in a host medium. We consider two cases: an ideal structureless medium (modeling ultrasoft materials such as polymer melts) and a dilute bath of interacting repulsive particles. When the driving of the probe exceeds a critical force, the microviscosity of the medium drops abruptly by about an order of magnitude. This phenomenon occurs for strong attractive interactions between a large probe and a sufficiently dense host medium.