Search results for "microscopi"

showing 10 items of 232 documents

Study of the low-lying collective states in 94–100Mo isotopes using the MAVA

2006

Abstract A systematic investigation of reduced electric quadrupole decay strengths, B ( E 2 ) and level energies of even 94–100 Mo isotopes is performed using the microscopic anharmonic vibrator approach (MAVA). The MAVA is suited for dynamical microscopic description of two-phonon-like states and their energy splitting due to interaction with low-lying one-phonon states. The starting point for the model is a realistic single-particle valence space and a microscopic many-body Hamiltonian which is used to generate the one-phonon states by the use of the quasiparticle random-phase approximation (QRPA). The same Hamiltonian generates also the interaction between the one- and two-phonon states.…

PhysicsNuclear and High Energy Physicssymbols.namesakeValence (chemistry)IsotopeAnharmonicityQuadrupoleQuasiparticlesymbolsMicroscopic descriptionAtomic physicsHamiltonian (quantum mechanics)Nuclear Physics A
researchProduct

Application of thermodynamics to driven systems

2007

Application of thermodynamics to driven systems is discussed. As particular examples, simple traffic flow models are considered. On a microscopic level, traffic flow is described by Bando's optimal velocity model in terms of accelerating and decelerating forces. It allows to introduce kinetic, potential, as well as total energy, which is the internal energy of the car system in view of thermodynamics. The latter is not conserved, although it has certain value in any of two possible stationary states corresponding either to fixed point or to limit cycle in the space of headways and velocities. On a mesoscopic level of description, the size n of car cluster is considered as a stochastic varia…

PhysicsPhysics - Physics and SocietyInternal energyOther Physics TopicsStatistical Mechanics (cond-mat.stat-mech)ThermodynamicsFOS: Physical sciencesDetailed balanceAnnan fysikPhysics and Society (physics.soc-ph)Condensed Matter PhysicsElectronic Optical and Magnetic MaterialsTraffic flow (computer networking)Microscopic traffic flow modelEquilibrium thermodynamicsLimit cycleMaster equationCondensed Matter - Statistical MechanicsStationary state
researchProduct

Microscopic biasing of discrete-time quantum trajectories

2021

We develop a microscopic theory for biasing the quantum trajectories of an open quantum system, which renders rare trajectories typical. To this end we consider a discrete-time quantum dynamics, where the open system collides sequentially with qubit probes which are then measured. A theoretical framework is built in terms of thermodynamic functionals in order to characterize its quantum trajectories (each embodied by a sequence of measurement outcomes). We show that the desired biasing is achieved by suitably modifying the Kraus operators describing the discrete open dynamics. From a microscopical viewpoint and for short collision times, this corresponds to adding extra collisions which enf…

PhysicsQuantum PhysicsSettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciPhysics and Astronomy (miscellaneous)Quantum dynamicsMaterials Science (miscellaneous)FOS: Physical sciencesbiased dynamicsOpen system (systems theory)Atomic and Molecular Physics and OpticsSettore FIS/03 - Fisica Della Materiabiased dynamics; discrete-time quantum dynamics; collision model; quantum trajectoriesOpen quantum systemClassical mechanicsquantum trajectoriesDiscrete time and continuous timeQubitTrajectorycollision modelMicroscopic theoryElectrical and Electronic EngineeringQuantum Physics (quant-ph)Quantumdiscrete-time quantum dynamics
researchProduct

Quantum capacitance: a microscopic derivation

2010

We start from microscopic approach to many body physics and show the analytical steps and approximations required to arrive at the concept of quantum capacitance. These approximations are valid only in the semi-classical limit and the quantum capacitance in that case is determined by Lindhard function. The effective capacitance is the geometrical capacitance and the quantum capacitance in series, and this too is established starting from a microscopic theory.

PhysicsSeries (mathematics)ta114Condensed Matter - Mesoscale and Nanoscale PhysicsFOS: Physical sciencesFunction (mathematics)Condensed Matter PhysicsCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCapacitanceAtomic and Molecular Physics and OpticsMany bodyElectronic Optical and Magnetic MaterialsQuantum capacitanceClassical mechanicsQuantum mechanicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)Limit (mathematics)Microscopic theoryQuantum dissipation
researchProduct

Microscopic theory of glassy dynamics and glass transition for molecular crystals.

2004

We derive a microscopic equation of motion for the dynamical orientational correlators of molecular crystals. Our approach is based upon mode coupling theory. Compared to liquids we find four main differences: (i) the memory kernel contains Umklapp processes, (ii) besides the static two-molecule orientational correlators one also needs the static one-molecule orientational density as an input, where the latter is nontrivial, (iii) the static orientational current density correlator does contribute an anisotropic, inertia-independent part to the memory kernel, (iv) if the molecules are assumed to be fixed on a rigid lattice, the tensorial orientational correlators and the memory kernel have …

PhysicsStatistical Mechanics (cond-mat.stat-mech)Condensed matter physicsFOS: Physical sciencesEquations of motionCondensed Matter - Soft Condensed MatterAtomic packing factorBrillouin zoneReciprocal latticeMode couplingSoft Condensed Matter (cond-mat.soft)Microscopic theoryAnisotropyGlass transitionCondensed Matter - Statistical MechanicsPhysical review. E, Statistical, nonlinear, and soft matter physics
researchProduct

On the theory of light scattering in molecular liquids

2001

The theory of light scattering for a system of linear molecules with anisotropic polarizabilities is considered. As a starting point for our theory, we express the result of a scattering experiment in VV and VH symmetry as dynamic correlation functions of tensorial densities $\rho_{lm}(q)$ with $l=0$ and $l=2$. $l$, $m$ denote indices of spherical harmonics. To account for all observed hydrodynamic singularities, a generalization of the theory of Schilling and Scheidsteger \cite{schilling97} for these correlation functions is presented, which is capable to describe the light scattering experiments from the liquid regime to the glassy state. As a microscopic theory it fulfills all sum rules …

PhysicsStatistical Mechanics (cond-mat.stat-mech)ScatteringFOS: Physical sciencesSpherical harmonicsLinear molecular geometryCondensed Matter - Soft Condensed MatterCondensed Matter PhysicsCoupling (probability)HelicityLight scatteringSymmetry (physics)Electronic Optical and Magnetic MaterialsSoft Condensed Matter (cond-mat.soft)Microscopic theoryCondensed Matter - Statistical MechanicsMathematical physics
researchProduct

Simple Microscopic Theory of Amontons' Laws for Static Friction

2001

A microscopic theory for the ubiquitous phenomenon of static friction is presented. Interactions between two surfaces are modeled by an energy penalty that increases exponentially with the degree of surface overlap. The resulting static friction is proportional to load, in accordance with Amontons' laws. However the friction coefficient between bare surfaces vanishes as the area of individual contacts grows, except in the rare case of commensurate surfaces. An area independent friction coefficient is obtained for any surface geometry when an adsorbed layer of mobile atoms is introduced between the surfaces. The predictions from our simple analytic model are confirmed by atomistically detail…

PhysicsSurface (mathematics)Condensed Matter - Materials ScienceAnalytic modelMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGeneral Physics and Astronomy02 engineering and technologyCondensed Matter - Soft Condensed Matter021001 nanoscience & nanotechnology53001 natural sciencesStatic frictionMolecular dynamicsClassical mechanicsSimple (abstract algebra)Law0103 physical sciencesRare caseSoft Condensed Matter (cond-mat.soft)Surface geometryMicroscopic theory010306 general physics0210 nano-technology
researchProduct

About the link between the detailed description of transitions in an ion and the average-ion models

2009

We study the link which exists between microscopic (detailed) models for the evolution of the electronic configurations in a population of ions and the macroscopic (average ion) models. Rigorous asymptotics are presented in situations where they exist (large temperature; almost empty or almost full shells), and numerical simulations are presented.

Physicseducation.field_of_studyApplied MathematicsGeneral MathematicsAverage-ion modelsrigorous asymptoticsPopulationcomparison of solutions34C11Ion37M0535Q40Statistical physicsElectron configurationmicroscopic models82D10Link (knot theory)education
researchProduct

Role of Single-Particle Energies in Microscopic Interacting Boson Model Double Beta Decay Calculations

2021

Single-particle level energies form a significant input in nuclear physics calculations where single-particle degrees of freedom are taken into account, including microscopic interacting boson model investigations. The single-particle energies may be treated as input parameters that are fitted to reach an optimal fit to the data. Alternatively, they can be calculated using a mean field potential, or they can be extracted from available experimental data, as is done in the current study. The role of single-particle level energies in the microscopic interacting boson model calculations is discussed with special emphasis on recent double beta decay calculations.

Physicslcsh:QC793-793.5single-particle energieslcsh:Elementary particle physicsDegrees of freedom (physics and chemistry)General Physics and Astronomyhiukkasfysiikkaneutrinoless double beta decayNuclear physicsMean field theorymicroscopic interacting boson modelDouble beta decayParticleInteracting boson modelydinfysiikka
researchProduct

Occupation probabilities of single particle levels using the microscopic interacting boson model: Application to some nuclei of interest in neutrinol…

2016

We have developed a new method to calculate the occupancies of single particle levels in atomic nuclei. This method has been developed in the context of the microscopic interacting boson model, in which neutron and proton degrees of freedom are treated explicitly. The energies of the single particle levels constitute a very important input for the calculation of the occupancies in this method. In principle these energies can be considered as input parameters that can be fitted to reproduce the experimental occupancies. Instead of fitting, in this study we have extracted the single particle energies from experimental data on nuclei with a particle more or one particle less than a shell closu…

Physicsta114Proton010308 nuclear & particles physicsNuclear TheoryDegrees of freedom (physics and chemistry)double beta decayContext (language use)01 natural sciences7. Clean energyNuclear physicssingle particle levelsParticle decayatomic nucleimicroscopic interacting boson model0103 physical sciencesAtomic nucleusParticleNeutronInteracting boson modelAtomic physics010303 astronomy & astrophysicsPhysical Review C
researchProduct