Search results for "missing data"
showing 10 items of 83 documents
Study Design in Causal Models
2014
The causal assumptions, the study design and the data are the elements required for scientific inference in empirical research. The research is adequately communicated only if all of these elements and their relations are described precisely. Causal models with design describe the study design and the missing-data mechanism together with the causal structure and allow the direct application of causal calculus in the estimation of the causal effects. The flow of the study is visualized by ordering the nodes of the causal diagram in two dimensions by their causal order and the time of the observation. Conclusions on whether a causal or observational relationship can be estimated from the coll…
Bayesian joint modeling for assessing the progression of chronic kidney disease in children.
2016
Joint models are rich and flexible models for analyzing longitudinal data with nonignorable missing data mechanisms. This article proposes a Bayesian random-effects joint model to assess the evolution of a longitudinal process in terms of a linear mixed-effects model that accounts for heterogeneity between the subjects, serial correlation, and measurement error. Dropout is modeled in terms of a survival model with competing risks and left truncation. The model is applied to data coming from ReVaPIR, a project involving children with chronic kidney disease whose evolution is mainly assessed through longitudinal measurements of glomerular filtration rate.
A hierarchical Bayesian birth cohort analysis from incomplete registry data: evaluating the trends in the age of onset of insulin-dependent diabetes …
2005
Childhood diabetes is one of the major non-communicable diseases in children under 15 years of age. It requires a life-long insulin treatment and may lead to serious complications. Along with the worldwide increase in the incidence several countries have recently reported a decreasing trend in the age of onset of the disease. The aim of this study is to analyse long-term data on the incidence of the childhood diabetes in Finland from the birth cohorts perspective. The annual incidence data were available for the period 1965--1996 which translates into 1951--1996 birth cohorts. Hence the data consist of completely and partially observed cohorts. Bayesian modelling was employed in the analysi…
Multiple Comparisons of Treatments with Stable Multivariate Tests in a Two‐Stage Adaptive Design, Including a Test for Non‐Inferiority
2000
The application of stabilized multivariate tests is demonstrated in the analysis of a two-stage adaptive clinical trial with three treatment arms. Due to the clinical problem, the multiple comparisons include tests of superiority as well as a test for non-inferiority, where non-inferiority is (because of missing absolute tolerance limits) expressed as linear contrast of the three treatments. Special emphasis is paid to the combination of the three sources of multiplicity - multiple endpoints, multiple treatments, and two stages of the adaptive design. Particularly, the adaptation after the first stage comprises a change of the a-priori order of hypotheses.
Estimating Mean Lifetime from Partially Observed Events in Nuclear Physics
2022
Abstract The mean lifetime is an important characteristic of particles to be identified in nuclear physics. State-of-the-art particle detectors can identify the arrivals of single radioactive nuclei as well as their subsequent radioactive decays (departures). Challenges arise when the arrivals and departures are unmatched and the departures are only partially observed. An inefficient solution is to run experiments where the arrival rate is set very low to allow for the matching of arrivals and departures. We propose an estimation method that works for a wide range of arrival rates. The method combines an initial estimator and a numerical bias correction technique. Simulations and examples b…
cglasso: An R Package for Conditional Graphical Lasso Inference with Censored and Missing Values
2023
Sparse graphical models have revolutionized multivariate inference. With the advent of high-dimensional multivariate data in many applied fields, these methods are able to detect a much lower-dimensional structure, often represented via a sparse conditional independence graph. There have been numerous extensions of such methods in the past decade. Many practical applications have additional covariates or suffer from missing or censored data. Despite the development of these extensions of sparse inference methods for graphical models, there have been so far no implementations for, e.g., conditional graphical models. Here we present the general-purpose package cglasso for estimating sparse co…
Systematic handling of missing data in complex study designs : experiences from the Health 2000 and 2011 Surveys
2016
We present a systematic approach to the practical and comprehensive handling of missing data motivated by our experiences of analyzing longitudinal survey data. We consider the Health 2000 and 2011 Surveys (BRIF8901) where increased non-response and non-participation from 2000 to 2011 was a major issue. The model assumptions involved in the complex sampling design, repeated measurements design, non-participation mechanisms and associations are presented graphically using methodology previously defined as a causal model with design, i.e. a functional causal model extended with the study design. This tool forces the statistician to make the study design and the missing-data mechanism explicit…
The Hierarchical Agglomerative Clustering with Gower index: a methodology for automatic design of OLAP cube in ecological data processing context
2015
In Press, Corrected Proof; International audience; The OLAP systems can be an improvement for ecological studies. In fact, ecology studies, follows and analyzes phenomenon across space and time and according to several parameters. OLAP systems can provide to ecologists browsing in a large dataset. One focus of the current research on OLAP system is the automatic design of OLAP cubes and of data warehouse schemas. This kind of works makes accessible OLAP technology to non information technology experts. But to be efficient, the automatic OLAP building must take into account various cases. Moreover the OLAP technology is based on the concept of hierarchy. Thereby the hierarchical clustering m…
Missing Observations and Evolutionary Spectrum for Random Fields
2012
International audience
deaR-Shiny: An Interactive Web App for Data Envelopment Analysis
2021
In this paper, we describe an interactive web application (deaR-shiny) to measure efficiency and productivity using data envelopment analysis (DEA). deaR-shiny aims to fill the gap that currently exists in the availability of online DEA software offering practitioners and researchers free access to a very wide variety of DEA models (both conventional and fuzzy models). We illustrate how to use the web app by replicating the main results obtained by Carlucci, Cirà and Coccorese in 2018, who investigate the efficiency and economic sustainability of Italian regional airport by using two conventional DEA models, and the results given by Kao and Liu in their papers published in 2000 and 2003, wh…