Search results for "missing data"

showing 10 items of 83 documents

Study Design in Causal Models

2014

The causal assumptions, the study design and the data are the elements required for scientific inference in empirical research. The research is adequately communicated only if all of these elements and their relations are described precisely. Causal models with design describe the study design and the missing-data mechanism together with the causal structure and allow the direct application of causal calculus in the estimation of the causal effects. The flow of the study is visualized by ordering the nodes of the causal diagram in two dimensions by their causal order and the time of the observation. Conclusions on whether a causal or observational relationship can be estimated from the coll…

Statistics and ProbabilityEmpirical researchTheoretical computer scienceGraph (abstract data type)Graphical modelStatistics Probability and UncertaintyCausal structureMissing dataCausalityStructural equation modelingCausal modelMathematicsScandinavian Journal of Statistics
researchProduct

Bayesian joint modeling for assessing the progression of chronic kidney disease in children.

2016

Joint models are rich and flexible models for analyzing longitudinal data with nonignorable missing data mechanisms. This article proposes a Bayesian random-effects joint model to assess the evolution of a longitudinal process in terms of a linear mixed-effects model that accounts for heterogeneity between the subjects, serial correlation, and measurement error. Dropout is modeled in terms of a survival model with competing risks and left truncation. The model is applied to data coming from ReVaPIR, a project involving children with chronic kidney disease whose evolution is mainly assessed through longitudinal measurements of glomerular filtration rate.

Statistics and ProbabilityEpidemiologyComputer scienceBayesian probability030232 urology & nephrologyRenal function01 natural sciences010104 statistics & probability03 medical and health sciences0302 clinical medicineHealth Information ManagementStatisticsEconometricsmedicineHumans0101 mathematicsRenal Insufficiency ChronicChildJoint (geology)Dropout (neural networks)Survival analysisAutocorrelationBayes Theoremmedicine.diseaseMissing dataSurvival AnalysisChild PreschoolDisease ProgressionKidney diseaseStatistical methods in medical research
researchProduct

A hierarchical Bayesian birth cohort analysis from incomplete registry data: evaluating the trends in the age of onset of insulin-dependent diabetes …

2005

Childhood diabetes is one of the major non-communicable diseases in children under 15 years of age. It requires a life-long insulin treatment and may lead to serious complications. Along with the worldwide increase in the incidence several countries have recently reported a decreasing trend in the age of onset of the disease. The aim of this study is to analyse long-term data on the incidence of the childhood diabetes in Finland from the birth cohorts perspective. The annual incidence data were available for the period 1965--1996 which translates into 1951--1996 birth cohorts. Hence the data consist of completely and partially observed cohorts. Bayesian modelling was employed in the analysi…

Statistics and ProbabilityMaleAdolescentEpidemiologymedicine.medical_treatmentDiseaseCohort StudiesDiabetes mellitusMedicineHumansAge of OnsetChildFinlandModels Statisticalbusiness.industryInsulinIncidence (epidemiology)Bayes Theoremmedicine.diseaseMissing dataMarkov ChainsDiabetes Mellitus Type 1Child PreschoolCohortFemaleAge of onsetbusinessMonte Carlo MethodCohort studyDemographyStatistics in medicine
researchProduct

Multiple Comparisons of Treatments with Stable Multivariate Tests in a Two‐Stage Adaptive Design, Including a Test for Non‐Inferiority

2000

The application of stabilized multivariate tests is demonstrated in the analysis of a two-stage adaptive clinical trial with three treatment arms. Due to the clinical problem, the multiple comparisons include tests of superiority as well as a test for non-inferiority, where non-inferiority is (because of missing absolute tolerance limits) expressed as linear contrast of the three treatments. Special emphasis is paid to the combination of the three sources of multiplicity - multiple endpoints, multiple treatments, and two stages of the adaptive design. Particularly, the adaptation after the first stage comprises a change of the a-priori order of hypotheses.

Statistics and ProbabilityMultivariate statisticsAdaptive clinical trialMultivariate analysisMultiple comparisons problemStatisticsContrast (statistics)Regression analysisGeneral MedicineStatistics Probability and UncertaintyMissing dataStatistical hypothesis testingMathematicsBiometrical Journal
researchProduct

Estimating Mean Lifetime from Partially Observed Events in Nuclear Physics

2022

Abstract The mean lifetime is an important characteristic of particles to be identified in nuclear physics. State-of-the-art particle detectors can identify the arrivals of single radioactive nuclei as well as their subsequent radioactive decays (departures). Challenges arise when the arrivals and departures are unmatched and the departures are only partially observed. An inefficient solution is to run experiments where the arrival rate is set very low to allow for the matching of arrivals and departures. We propose an estimation method that works for a wide range of arrival rates. The method combines an initial estimator and a numerical bias correction technique. Simulations and examples b…

Statistics and ProbabilityPhysicsNuclear physicsdesign of experimentsmissing datanoisy binary searchradioactive decayPoisson processStatistics Probability and Uncertaintyydinfysiikkatilastolliset mallitestimointiradioaktiivisuusJournal of the Royal Statistical Society Series C: Applied Statistics
researchProduct

cglasso: An R Package for Conditional Graphical Lasso Inference with Censored and Missing Values

2023

Sparse graphical models have revolutionized multivariate inference. With the advent of high-dimensional multivariate data in many applied fields, these methods are able to detect a much lower-dimensional structure, often represented via a sparse conditional independence graph. There have been numerous extensions of such methods in the past decade. Many practical applications have additional covariates or suffer from missing or censored data. Despite the development of these extensions of sparse inference methods for graphical models, there have been so far no implementations for, e.g., conditional graphical models. Here we present the general-purpose package cglasso for estimating sparse co…

Statistics and Probabilityconditional Gaussian graphical modelscglasso conditional Gaussian graphical models glasso high-dimensionality sparsity censoring missing dataglassosparsityhigh-dimensionalityconditional Gaussian graphical models glasso high-dimensionality sparsity censoring missing datacglassomissing datacensoringStatistics Probability and UncertaintySettore SECS-S/01 - StatisticaSoftware
researchProduct

Systematic handling of missing data in complex study designs : experiences from the Health 2000 and 2011 Surveys

2016

We present a systematic approach to the practical and comprehensive handling of missing data motivated by our experiences of analyzing longitudinal survey data. We consider the Health 2000 and 2011 Surveys (BRIF8901) where increased non-response and non-participation from 2000 to 2011 was a major issue. The model assumptions involved in the complex sampling design, repeated measurements design, non-participation mechanisms and associations are presented graphically using methodology previously defined as a causal model with design, i.e. a functional causal model extended with the study design. This tool forces the statistician to make the study design and the missing-data mechanism explicit…

Statistics and Probabilitymultiple imputationComputer sciencecomputer.software_genre01 natural sciences010104 statistics & probability03 medical and health sciences0302 clinical medicinenon-responseSampling design030212 general & internal medicine0101 mathematicsCausal modelta112Clinical study designInverse probability weightingSampling (statistics)non-participationMissing dataData sciencedoubly robust methodsSurvey data collectionData miningStatistics Probability and Uncertaintycomputerinverse probability weightingStatisticiancausal model with designJournal of Applied Statistics
researchProduct

The Hierarchical Agglomerative Clustering with Gower index: a methodology for automatic design of OLAP cube in ecological data processing context

2015

In Press, Corrected Proof; International audience; The OLAP systems can be an improvement for ecological studies. In fact, ecology studies, follows and analyzes phenomenon across space and time and according to several parameters. OLAP systems can provide to ecologists browsing in a large dataset. One focus of the current research on OLAP system is the automatic design of OLAP cubes and of data warehouse schemas. This kind of works makes accessible OLAP technology to non information technology experts. But to be efficient, the automatic OLAP building must take into account various cases. Moreover the OLAP technology is based on the concept of hierarchy. Thereby the hierarchical clustering m…

[ INFO.INFO-NA ] Computer Science [cs]/Numerical Analysis [cs.NA]Computer scienceContext (language use)02 engineering and technologycomputer.software_genre020204 information systems0202 electrical engineering electronic engineering information engineeringDimension (data warehouse)Cluster analysisEcology Evolution Behavior and Systematics[ SDE.BE ] Environmental Sciences/Biodiversity and Ecology[INFO.INFO-DB]Computer Science [cs]/Databases [cs.DB]OLAPEcologyAutomatic designApplied MathematicsEcological ModelingOnline analytical processing[ STAT.AP ] Statistics [stat]/Applications [stat.AP]InformationSystems_DATABASEMANAGEMENTHierarchical agglomerative clustering[INFO.INFO-NA]Computer Science [cs]/Numerical Analysis [cs.NA]Missing dataData warehouseComputer Science ApplicationsHierarchical clustering[ INFO.INFO-DB ] Computer Science [cs]/Databases [cs.DB]Computational Theory and MathematicsModeling and SimulationOLAP cube020201 artificial intelligence & image processingData mining[SDE.BE]Environmental Sciences/Biodiversity and EcologyBird populationcomputer
researchProduct

Missing Observations and Evolutionary Spectrum for Random Fields

2012

International audience

[ MATH ] Mathematics [math][PHYS]Physics [physics][ PHYS ] Physics [physics][ STAT ] Statistics [stat]Evolutionary spactral[SPI] Engineering Sciences [physics]Missing data analysis[MATH] Mathematics [math][STAT] Statistics [stat][PHYS] Physics [physics][STAT]Statistics [stat][SPI]Engineering Sciences [physics][ SPI ] Engineering Sciences [physics][MATH]Mathematics [math]Nonstationary processesComputingMilieux_MISCELLANEOUS
researchProduct

deaR-Shiny: An Interactive Web App for Data Envelopment Analysis

2021

In this paper, we describe an interactive web application (deaR-shiny) to measure efficiency and productivity using data envelopment analysis (DEA). deaR-shiny aims to fill the gap that currently exists in the availability of online DEA software offering practitioners and researchers free access to a very wide variety of DEA models (both conventional and fuzzy models). We illustrate how to use the web app by replicating the main results obtained by Carlucci, Cirà and Coccorese in 2018, who investigate the efficiency and economic sustainability of Italian regional airport by using two conventional DEA models, and the results given by Kao and Liu in their papers published in 2000 and 2003, wh…

fuzzy deaOperations researchComputer scienceGeography Planning and Development0211 other engineering and technologiesTJ807-83002 engineering and technologyManagement Monitoring Policy and LawTD194-195Fuzzy logic:CIENCIAS ECONÓMICAS [UNESCO]R softwareRenewable energy sourcesmalmquist indexSoftwareMalmquist indexDEA0202 electrical engineering electronic engineering information engineeringData envelopment analysisFuzzy numberWeb applicationGE1-350fuzzy DEAMeasure (data warehouse)021103 operations researchEnvironmental effects of industries and plantsRenewable Energy Sustainability and the Environmentbusiness.industryshinydear packageUNESCO::CIENCIAS ECONÓMICASMissing dataVariety (cybernetics)Environmental sciencesdeaefficiency020201 artificial intelligence & image processingdata envelopment analysisdeaR packagebusinessr softwareSustainability
researchProduct