Search results for "model theory"
showing 10 items of 681 documents
Hodge Numbers for the Cohomology of Calabi-Yau Type Local Systems
2014
We determine the Hodge numbers of the cohomology group \(H_{L^{2}}^{1}(S, \mathbb{V}) = H^{1}(\bar{S},j_{{\ast}}\mathbb{V})\) using Higgs cohomology, where the local system \(\mathbb{V}\) is induced by a family of Calabi-Yau threefolds over a smooth, quasi-projective curve S. This generalizes previous work to the case of quasi-unipotent, but not necessarily unipotent, local monodromies at infinity. We give applications to Rohde’s families of Calabi-Yau 3-folds.
Closedness properties in team learning of recursive functions
1997
This paper investigates closedness properties in relation with team learning of total recursive functions. One of the first problems solved for any new identification types is the following: “Does the identifiability of classes U1 and U2 imply the identifiability of U1∪U2?” In this paper we are interested in a more general question: “Does the identifiability of every union of n−1 classes out of U1,...,Un imply the identifiability of U1∪...∪Un?” If the answer is positive, we call such identification type n-closed. We show that n-closedness can be equivalently formulated in terms of team learning. After that we find for which n team identification in the limit and team finite identification t…
Improvement of Grüss and Ostrowski type inequalities
2015
Several inequalities of Ostrowski-Gr?ss-type available in the literature are generalized considering the weighted case of them. The inequality of Gr?ss type proved by P. Cerone and S.S. Dragomir [3] is extended for the weighted case.
Continuous *-homomorphisms of Banach Partial *-algebras
2007
We continue the study of Banach partial *-algebras, in particular the question of the interplay between *-homomorphisms and biweights. Two special types of objects are introduced, namely, relatively bounded biweights and Banach partial *-algebras satisfying a certain Condition (S), which behave in a more regular way. We also present a systematic construction of Banach partial *-algebras of this type and exhibit several examples.
On a theorem of Berkovich
2002
In a recent paper, Berkovich studied how to describe the nilpotent residual of a group in terms of the nilpotent residuals of some of its subgroups. That study required the knowledge of the structure of the minimal nonnilpotent groups, also called Schmidt groups. The major aim of this paper is to show that this description could be obtained as a consequence of a more complete property, giving birth to some interesting generalizations. This purpose naturally led us to the study of a family of subgroup-closed saturated formations of nilpotent type. An innovative approach to these classes is provided.
Polish G-spaces and continuous logic
2017
Abstract We extend the generalised model theory of H. Becker from [2] to the case of Polish G -spaces when G is an arbitrary Polish group. Our approach is inspired by logic actions of Polish groups which arise in continuous logic.
Perron type integral on compact zero-dimensional Abelian groups
2008
Perron and Henstock type integrals defined directly on a compact zero-dimensional Abelian group are studied. It is proved that the considered Perron type integral defined by continuous majorants and minorants is equivalent to the integral defined in the same way, but without assumption on continuity of majorants and minorants.
An Integral Version of Ćirić’s Fixed Point Theorem
2011
We establish a new fixed point theorem for mappings satisfying a general contractive condition of integral type. The presented theorem generalizes the well known Ciric's fixed point theorem [Lj. B. Ciric, Generalized contractions and fixed point theorems, Publ. Inst. Math. 12 (26) (1971) 19-26]. Some examples and applications are given.
On Conditioning Operators
1999
The construction of conditional events (so-called measure-free conditioning) has a long history and is one of the fundamental problems in non-deterministic system theory (cf. [6]). In particular, the iteration of measure-free conditioning is still an open problem. The present paper tries to make a contribution to this question. In particular, we give an axiomatic introduction of conditioning operators which act as binary operations on the universe of events. The corresponding axiom system of this type of operators focus special attention on the intuitive understanding that the event ‘α given β’ is somewhere in “between” ‘α and β’ and ‘β implies α’. A detailed motivation of these axioms can …