Search results for "model theory"
showing 10 items of 681 documents
Consensus among preference rankings: a new weighted correlation coefficient for linear and weak orderings
2021
AbstractPreference data are a particular type of ranking data where some subjects (voters, judges,...) express their preferences over a set of alternatives (items). In most real life cases, some items receive the same preference by a judge, thus giving rise to a ranking with ties. An important issue involving rankings concerns the aggregation of the preferences into a “consensus”. The purpose of this paper is to investigate the consensus between rankings with ties, taking into account the importance of swapping elements belonging to the top (or to the bottom) of the ordering (position weights). By combining the structure of $$\tau _x$$ τ x proposed by Emond and Mason (J Multi-Criteria Decis…
Vector coherent states and intertwining operators
2009
In this paper we discuss a general strategy to construct vector coherent states of the Gazeau-Klauder type and we use them to built up examples of isospectral hamiltonians. For that we use a general strategy recently proposed by the author and which extends well known facts on intertwining operators. We also discuss the possibility of constructing non-isospectral hamiltonians with related eigenstates.
Archetypoids: A new approach to define representative archetypal data
2015
[EN] The new concept archetypoids is introduced. Archetypoid analysis represents each observation in a dataset as a mixture of actual observations in the dataset, which are pure type or archetypoids. Unlike archetype analysis, archetypoids are real observations, not a mixture of observations. This is relevant when existing archetypal observations are needed, rather than fictitious ones. An algorithm is proposed to find them and some of their theoretical properties are introduced. It is also shown how they can be obtained when only dissimilarities between observations are known (features are unavailable). Archetypoid analysis is illustrated in two design problems and several examples, compar…
Ergodicity for a stochastic Hodgkin–Huxley model driven by Ornstein–Uhlenbeck type input
2013
We consider a model describing a neuron and the input it receives from its dendritic tree when this input is a random perturbation of a periodic deterministic signal, driven by an Ornstein-Uhlenbeck process. The neuron itself is modeled by a variant of the classical Hodgkin-Huxley model. Using the existence of an accessible point where the weak Hoermander condition holds and the fact that the coefficients of the system are analytic, we show that the system is non-degenerate. The existence of a Lyapunov function allows to deduce the existence of (at most a finite number of) extremal invariant measures for the process. As a consequence, the complexity of the system is drastically reduced in c…
The multichoice consistent value
2000
We consider multichoice NTU games, i.e., cooperative NTU games in which players can participate in the game with several levels of activity. For these games, we define and characterize axiomatically the multichoice consistent value, which is a generalization of the consistent NTU value for NTU games and of the multichoice value for multichoice TU games. Moreover, we show that this value coincides with the consistent NTU value of a replicated NTU game and we provide a probabilistic interpretation.
Partition function of the trigonometric SOS model with reflecting end
2010
We compute the partition function of the trigonometric SOS model with one reflecting end and domain wall type boundary conditions. We show that in this case, instead of a sum of determinants obtained by Rosengren for the SOS model on a square lattice without reflection, the partition function can be represented as a single Izergin determinant. This result is crucial for the study of the Bethe vectors of the spin chains with non-diagonal boundary terms.
Multitype spatial point patterns with hierarchical interactions.
2001
Multitype spatial point patterns with hierarchical interactions are considered. Here hierarchical interaction means directionality: points on a higher level of hierarchy affect the locations of points on the lower levels, but not vice versa. Such relations are common, for example, in ecological communities. Interacting point patterns are often modeled by Gibbs processes with pairwise interactions. However, these models are inherently symmetric, and the hierarchy can be acknowledged only when interpreting the results. We suggest the following in allowing the inclusion of the hierarchical structure in the model. Instead of regarding the pattern as a realization of a stationary multivariate po…
On a set of data for the membrane potential in a neuron
2006
We consider a set of data where the membrane potential in a pyramidal neuron is measured almost continuously in time, under varying experimental conditions. We use nonparametric estimates for the diffusion coefficient and the drift in view to contribute to the discussion which type of diffusion process is suitable to model the membrane potential in a neuron (more exactly: in a particular type of neuron under particular experimental conditions).
A non-linear optimization procedure to estimate distances and instantaneous substitution rate matrices under the GTR model.
2006
Abstract Motivation: The general-time-reversible (GTR) model is one of the most popular models of nucleotide substitution because it constitutes a good trade-off between mathematical tractability and biological reality. However, when it is applied for inferring evolutionary distances and/or instantaneous rate matrices, the GTR model seems more prone to inapplicability than more restrictive time-reversible models. Although it has been previously noted that the causes for intractability are caused by the impossibility of computing the logarithm of a matrix characterised by negative eigenvalues, the issue has not been investigated further. Results: Here, we formally characterize the mathematic…
Casimir-Polder forces, boundary conditions and fluctuations
2008
We review different aspects of the atom-atom and atom-wall Casimir-Polder forces. We first discuss the role of a boundary condition on the interatomic Casimir-Polder potential between two ground-state atoms, and give a physically transparent interpretation of the results in terms of vacuum fluctuations and image atomic dipoles. We then discuss the known atom-wall Casimir-Polder force for ground- and excited-state atoms, using a different method which is also suited for extension to time-dependent situations. Finally, we consider the fluctuation of the Casimir-Polder force between a ground-state atom and a conducting wall, and discuss possible observation of this force fluctuation.