Search results for "modelling and simulation"

showing 10 items of 97 documents

Regularization of optical flow with M-band wavelet transform

2003

The optical flow is an important tool for problems arising in the analysis of image sequences. Flow fields generated by various existing solving techniques are often noisy and partially incorrect, especially near occlusions or motion boundaries. Therefore, the additional information on the scene gained from a sequence of images is usually worse. In this paper, discrete wavelet transform has been adopted in order to enhance the reliability of optical flow estimation. A generalization of the well-known dyadic orthonormal wavelets to the case of the dilation scale factor M > 2 with N vanishing moments has been used, and it has proved to be a useful regularizing tool. The advantages in the comp…

Discrete wavelet transformM-band waveletLifting schemebusiness.industryStationary wavelet transformOptical flowComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONWavelet transformWavelet packet decompositionApplied MathematicSettore MAT/08 - Analisi NumericaComputational MathematicsWaveletComputational Theory and MathematicsMultiresolution analysis (MRA)Modeling and SimulationModelling and SimulationComputational MathematicComputer visionArtificial intelligenceHarmonic wavelet transformFast wavelet transformbusinessAlgorithmMathematicsComputers & Mathematics with Applications
researchProduct

A discrete mathematical model for addictive buying: Predicting the affected population evolution

2011

This paper deals with the construction of a discrete mathematical model for addictive buying. Firstly, identifications of consumers buying behavior are performed by using multivariate statistical techniques based on real data bases and sociological approaches. Then the population is divided into appropriate groups according to the level of overbuying and a discrete compartmental model is constructed. The future short term addicted population is computed assuming several future economic scenarios. © 2010 Elsevier Ltd.

Multivariate statisticsMultivariate analysismedia_common.quotation_subjectPopulationMultivariant analysisAddictive buyingPopulation evolutionModelling and SimulationShort termEconometricsBuying behavioreducationmedia_commonDiscrete mathematical modeleducation.field_of_studyMathematical modelsMathematical modelAddictionModelingPopulation evolutionMultivariate statisticsCompartmental modelComputer Science ApplicationsTerm (time)Modeling and SimulationMultivariate statistical techniquesMultivariate statisticalMATEMATICA APLICADACompulsive buying
researchProduct

Comparison of implementations of the lattice-Boltzmann method

2008

AbstractSimplicity of coding is usually an appealing feature of the lattice-Boltzmann method (LBM). Conventional implementations of LBM are often based on the two-lattice or the two-step algorithm, which however suffer from high memory consumption and poor computational performance, respectively. The aim of this work was to identify implementations of LBM that would achieve high computational performance with low memory consumption. Effects of memory addressing schemes were investigated in particular. Data layouts for velocity distribution values were also considered, and they were found to be related to computational performance. A novel bundle data layout was therefore introduced. Address…

Computational fluid mechanicsMemory addressing schemesComputer scienceLattice Boltzmann methodsParallel computingSupercomputerAddressing modeHigh memoryMemory addressComputational MathematicsComputational Theory and MathematicsModeling and SimulationBundleModelling and SimulationLattice-Boltzmann methodImplementationHigh-performance computingCoding (social sciences)Computers & Mathematics with Applications
researchProduct

A study of the material in the ATLAS inner detector using secondary hadronic interactions

2011

The ATLAS inner detector is used to reconstruct secondary vertices due to hadronic interactions of primary collision products, so probing the location and amount of material in the inner region of ATLAS. Data collected in 7 TeV pp collisions at the LHC, with a minimum bias trigger, are used for comparisons with simulated events. The reconstructed secondary vertices have spatial resolutions ranging from ~ 200μm to 1 mm. The overall material description in the simulation is validated to within an experimental uncertainty of about 7%. This will lead to a better understanding of the reconstruction of various objects such as tracks, leptons, jets, and missing transverse momentum.

PhotonPhysics::Instrumentation and Detectorsdetector modelling and simulations i (interaction of radiation with matter; interaction; large detector systems for particle and astroparticle physics; of photons with matter; interaction of hadrons with matter; etc); particle tracking detectors (solid-state detectors); si microstrip and pad detectors01 natural sciencesparticle tracking detectors[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]of photons with matter interaction of hadrons with matter etc)InstrumentationGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)Detectors de radiacióMathematical PhysicsPhysicsDetector modelling and simulations I (interaction of radiation with matter interaction of photons with matter interaction of hadrons with matter etc)Large Hadron ColliderSettore FIS/01 - Fisica SperimentaleDetectorVERTEX DETECTORSSi microstrip and pad detectorsTransition radiation detectorinteraction of hadrons with matterExperimental uncertainty analysismedicine.anatomical_structureParticle tracking detectors (Solid-state detectors)Física nuclearParticle Physics - Experimentof photons with matterParticle physicsDetector modelling and simulations I (interaction of radiation with matter interaction of photons with matter interaction of hadrons with matter etc); Particle tracking detectors (Solid-state detectors); Si microstrip and pad detectors; Large detector systems for particle and astroparticle physicsCiências Naturais::Ciências Físicas:Ciências Físicas [Ciências Naturais]Detector modelling and simulations I (interaction of radiation with matter interactionDetector modelling and simulations I (interaction of radiation with matterddc:500.2530Detector Modelling and SimulationsInteraction of photons with matterNuclear physicsAtlas (anatomy)0103 physical sciencesmedicineddc:610010306 general physicsetc)Astroparticle physicsParticle Tracking DetectorsScience & Technology010308 nuclear & particles physicsLarge detector systems for particle and astroparticle physicsLarge Detector Systemsdetector modelling and simulations IFísicaCol·lisions (Física nuclear)Experimental High Energy PhysicsHigh Energy Physics::ExperimentSi Microstrip and Pad DetectorsLepton
researchProduct

Conceptual design and simulation of a water Cherenkov muon veto for the XENON1T experiment

2014

XENON is a direct detection dark matter project, consisting of a time projection chamber (TPC) that uses xenon in double phase as a sensitive detection medium. XENON100, located at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy, is one of the most sensitive experiments of its field. During the operation of XENON100, the design and construction of the next generation detector (of ton-scale mass) of the XENON project, XENON1T, is taking place. XENON1T is being installed at LNGS as well. It has the goal to reduce the background by two orders of magnitude compared to XENON100, aiming at a sensitivity of $2 \cdot 10^{-47} \mathrm{cm}^{\mathrm{2}}$ for a WIMP mass of 50 GeV/c$^{2}$. With…

axionsPhysics - Instrumentation and Detectors[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Cherenkov and transition radiationCherenkov detectorPhysics::Instrumentation and DetectorsDark matterDetector modelling and simulations I (interaction of radiation with matterchemistry.chemical_elementFOS: Physical sciences01 natural scienceslaw.inventionNuclear physicsXenonWIMPlawCherenkov and transition radiation Detector modelling and simulations Cherenkov detectors Dark Matter detectorsetc.)0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsInstrumentationInstrumentation and Methods for Astrophysics (astro-ph.IM)Dark Matter detectors (WIMPsMathematical PhysicsCherenkov radiationetc)PhysicsMuonTime projection chamber010308 nuclear & particles physicsCherenkov detectorsDetectorAstrophysics::Instrumentation and Methods for Astrophysicsinteraction of photons with matterInstrumentation and Detectors (physics.ins-det)Cherenkov and transition radiation; Cherenkov detectors; Dark Matter detectors (WIMPs axions etc.); Detector modelling and simulations I (interaction of radiation with matter; interaction of hadrons with matter etc); interaction of photons with matter[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]interaction of hadrons with matterchemistryHigh Energy Physics::ExperimentAstrophysics - Instrumentation and Methods for AstrophysicsJOURNAL OF INSTRUMENTATION
researchProduct

The positioning system of the ANTARES Neutrino Telescope

2012

The ANTARES neutrino telescope, located 40km off the coast of Toulon in the Mediterranean Sea at a mooring depth of about 2475m, consists of twelve detection lines equipped typically with 25 storeys. Every storey carries three optical modules that detect Cherenkov light induced by charged secondary particles (typically muons) coming from neutrino interactions. As these lines are flexible structures fixed to the sea bed and held taut by a buoy, sea currents cause the lines to move and the storeys to rotate. The knowledge of the position of the optical modules with a precision better than 10cm is essential for a good reconstruction of particle tracks. In this paper the ANTARES positioning sys…

Positioning systemDetector control systems (detector and experiment monitoring and slow-control systems architecture hardware algorithms databases)Detector modelling and simulations II (electric fieldsDetector alignment and calibration methods (lasers sources particle-beams)01 natural sciencesTiming detectorshardwareDetector alignment and calibration methods010303 astronomy & astrophysicsInstrumentationDETECTOR ALIGMENTMathematical PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSOUND[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]Orientation (computer vision)[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]DetectorAstrophysics::Instrumentation and Methods for AstrophysicsTriangulation (computer vision)particle-beams)GeodesyDETECTOR CONTROL SYSTEMDetector modelling and simulations II (electric fields charge transport multiplication and induction pulse formation electron emission etc)Física nuclearNeutrinoAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical Phenomenadatabases)sources[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]pulse formationarchitecture[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesddc:500.2DETECTOR MODELLING AND SIMULATIONSDetector modelling and simulations IIalgorithmsPhysics::Geophysics0103 physical sciences14. Life underwaterInstrumentation and Methods for Astrophysics (astro-ph.IM)Cherenkov radiationetc)multiplication and inductionBuoyDetector control systems010308 nuclear & particles physicsDetector control systems (detector and experiment monitoring and slow-control systemsMooringcharge transport[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Detector alignment and calibration methods (laserselectron emissionFISICA APLICADAdetector modelling and simulations ii (electric fields; antares neutrino telescope; multiplication and induction; charge transport; pulse formation; electron emission; etc); hardware; architecture; timing detectors; detector control systems (detector and experiment monitoring and slow-control systems; algorithms; databases); sources; detector alignment; calibration.; acoustic positioning; detector alignment and calibration methods (lasers; particle-beams)
researchProduct

A new invariant-based method for building biomechanical behavior laws - Application to an anisotropic hyperelastic material with two fiber families

2013

Abstract In this article, we present a general constructive and original approach that allows us to calculate the invariants associated with an anisotropic hyperelastic material made of two families of collagen fibers. This approach is based on mathematical techniques from the theory of invariants: • Definition of the material symmetry group. • Analytical calculation of a set of generators using the Noether’s theorem. • Analytical calculation of an integrity basis. • Comparison between the proposed invariants and the classical ones.

[ SPI.MAT ] Engineering Sciences [physics]/Materials02 engineering and technologyTheory of invariantsConstructiveAnisotropic hyperelastic material[SPI.MAT]Engineering Sciences [physics]/Materialssymbols.namesake0203 mechanical engineeringMaterials Science(all)Modelling and SimulationGeneral Materials ScienceBiomechanicsInvariant (mathematics)AnisotropyMaterial symmetryMathematicsMechanical EngineeringApplied MathematicsMathematical analysis021001 nanoscience & nanotechnologyCondensed Matter Physics020303 mechanical engineering & transportsMechanics of MaterialsModeling and SimulationHyperelastic materialsymbolsNoether's theorem0210 nano-technology
researchProduct

Robust dynamical pattern formation from a multifunctional minimal genetic circuit.

2010

Abstract Background A practical problem during the analysis of natural networks is their complexity, thus the use of synthetic circuits would allow to unveil the natural mechanisms of operation. Autocatalytic gene regulatory networks play an important role in shaping the development of multicellular organisms, whereas oscillatory circuits are used to control gene expression under variable environments such as the light-dark cycle. Results We propose a new mechanism to generate developmental patterns and oscillations using a minimal number of genes. For this, we design a synthetic gene circuit with an antagonistic self-regulation to study the spatio-temporal control of protein expression. He…

Time FactorsTranscription GeneticSystems biologyGene regulatory networkPattern formationBiologyModels BiologicalCatalysis03 medical and health sciences0302 clinical medicineStructural BiologyModelling and SimulationOscillometryResearch articleEscherichia coliGene Regulatory Networkslcsh:QH301-705.5Molecular Biology030304 developmental biologyElectronic circuitGeneticsRegulation of gene expression0303 health sciencesModels StatisticalModels GeneticMechanism (biology)Applied MathematicsQuantitative Biology::Molecular NetworksGene Expression ProfilingSystems BiologyRobustness (evolution)DNAComputer Science ApplicationsQuorum sensinglcsh:Biology (General)Gene Expression RegulationModeling and SimulationBiological system030217 neurology & neurosurgeryBMC systems biology
researchProduct

A fully adaptive multiresolution scheme for image processing

2007

A nonlinear multiresolution scheme within Harten's framework [A. Harten, Discrete multiresolution analysis and generalized wavelets, J. Appl. Numer. Math. 12 (1993) 153-192; A. Harten, Multiresolution representation of data II, SIAM J. Numer. Anal. 33 (3) (1996) 1205-1256] is presented. It is based on a centered piecewise polynomial interpolation fully adapted to discontinuities. Compression properties of the multiresolution scheme are studied on various numerical experiments on images.

Mathematics::Functional AnalysisPolynomialNumerical analysisMultiresolution analysisImage processingComputer Science ApplicationsPolynomial interpolationWaveletModelling and SimulationComputer Science::Computer Vision and Pattern RecognitionModeling and SimulationCompression (functional analysis)CalculusPiecewiseAlgorithmMathematicsMathematical and Computer Modelling
researchProduct

Shooting methods for 1D steady-state free boundary problems

1993

AbstractIn this note, we present two numerical methods based on shooting methods to solve steady-state diffusion-absorption models.

Computational MathematicsSteady state (electronics)Shooting methodComputational Theory and MathematicsQuantitative Biology::Tissues and OrgansModeling and SimulationNumerical analysisModelling and SimulationMathematical analysisBoundary (topology)GeometryMathematicsComputers & Mathematics with Applications
researchProduct