Search results for "mouse"
showing 10 items of 590 documents
Enhancement of Wound Healing in Normal and Diabetic Mice by Topical Application of Amorphous Polyphosphate. Superior Effect of a Host⁻Guest Composite…
2017
The effect of polyphosphate (polyP) microparticles on wound healing was tested both in vitro and in a mice model in vivo. Two approaches were used: pure salts of polyphosphate, fabricated as amorphous microparticles (MPs, consisting of calcium and magnesium salts of polyP, “Ca–polyp-MPs” and “Mg–polyp-MPs”), and host–guest composite particles, prepared from amorphous collagen (host) and polyphosphate (guest), termed “col/polyp-MPs”. Animal experiments with polyP on healing of excisional wounds were performed using both normal mice and diabetic mice. After a healing period of 7 days “Ca–polyp-MP” significantly improved re-epithelialization in normal mice from 31% (control) to 72% (polyP micr…
Pharmacological disruption of the MID1/α4 interaction reduces mutant Huntingtin levels in primary neuronal cultures.
2017
Expression of mutant Huntingtin (HTT) protein is central to the pathophysiology of Huntington's Disease (HD). The E3 ubiquitin ligase MID1 appears to have a key role in facilitating translation of the mutant HTT mRNA suggesting that interference with the function of this complex could be an attractive therapeutic approach. Here we describe a peptide that is able to disrupt the interaction between MID1 and the α4 protein, a regulatory subunit of protein phosphatase 2A (PP2A). By fusing this peptide to a sequence from the HIV-TAT protein we demonstrate that the peptide can disrupt the interaction within cells and show that this results in a decrease in levels of ribosomal S6 phosphorylation a…
Coincident Activation of Glutamate Receptors Enhances GABAA Receptor-Induced Ionic Plasticity of the Intracellular Cl−-Concentration in Dissociated N…
2019
Massive activation of γ-amino butyric acid A (GABAA) receptors during pathophysiological activity induces an increase in the intracellular Cl−-concentration ([Cl−]i), which is sufficient to render GABAergic responses excitatory. However, to what extent physiological levels of GABAergic activity can influence [Cl−]i is not known. Aim of the present study is to reveal whether moderate activation of GABAA receptors mediates functionally relevant [Cl−]i changes and whether these changes can be augmented by coincident glutamatergic activity. To address these questions, we used whole-cell patch-clamp recordings from cultured cortical neurons [at days in vitro (DIV) 6–22] to determine changes in t…
Alterations in Tight- and Adherens-Junction Proteins Related to Glaucoma Mimicked in the Organotypically Cultivated Mouse Retina Under Elevated Press…
2020
Purpose To scrutinize alterations in cellular interactions and cell signaling in the glaucomatous retina, mouse retinal explants were exposed to elevated pressure. Methods Retinal explants were prepared from C57bl6 mice and cultivated in a pressure chamber under normotensive (atmospheric pressure + 0 mm Hg), moderately elevated (30 mm Hg), and highly elevated (60 mm Hg) pressure conditions. The expression levels of proteins involved in the formation of tight junctions (zonula occludens 1 [ZO-1], occludin, and claudin-5) and adherens junctions (VE-cadherin and β-catenin) and in cell-signaling cascades (Cdc42 and activated Cdc42 kinase 1 [ACK1]), as well as the expression levels of the growth…
Uncoupling of dynamin polymerization and GTPase activity revealed by the conformation-specific nanobody dynab
2017
Dynamin is a large GTPase that forms a helical collar at the neck of endocytic pits, and catalyzes membrane fission (Schmid and Frolov, 2011; Ferguson and De Camilli, 2012). Dynamin fission reaction is strictly dependent on GTP hydrolysis, but how fission is mediated is still debated (Antonny et al., 2016): GTP energy could be spent in membrane constriction required for fission, or in disassembly of the dynamin polymer to trigger fission. To follow dynamin GTP hydrolysis at endocytic pits, we generated a conformation-specific nanobody called dynab, that binds preferentially to the GTP hydrolytic state of dynamin-1. Dynab allowed us to follow the GTPase activity of dynamin-1 in real-time. We…
Cohen Syndrome-Associated Cataract Is Explained by VPS13B Functions in Lens Homeostasis and Is Modified by Additional Genetic Factors
2020
International audience; Purpose: Cohen syndrome (CS) is a rare genetic disorder caused by variants of the VPS13B gene. CS patients are affected with a severe form of retinal dystrophy, and in several cases cataracts also develop. The purpose of this study was to investigate the mechanisms and risk factors for cataract in CS, as well as to report on cataract surgeries in CS patients.Methods: To understand how VPS13B is associated with visual impairments in CS, we generated the Vps13b∆Ex3/∆Ex3 mouse model. Mice from 1 to 3 months of age were followed by ophthalmoscopy and slit-lamp examinations. Phenotypes were investigated by histology, immunohistochemistry, and western blot. Literature anal…
Humanization of the Blood-Brain Barrier Transporter ABCB1 in Mice Disrupts Genomic Locus - Lessons from Three Unsuccessful Approaches
2018
ATP-binding cassette (ABC) transporters are of major importance for the restricted access of toxins and drugs to the human body. At the body's barrier tissues like the blood-brain barrier, these transporters are highly represented. Especially, ABCB1 (P-glycoprotein) has been a priority target of pharmaceutical research, for instance, to aid chemotherapy of cancers, therapy resistant epilepsy, and lately even neurodegenerative diseases. To improve translational research, the humanization of mouse genes has become a popular tool although, like recently seen for Abcb1, not all approaches were successful. Here, we report the characterization of another unsuccessful commercially available ABCB1 …
RNase H2 Loss in Murine Astrocytes Results in Cellular Defects Reminiscent of Nucleic Acid-Mediated Autoinflammation
2018
Aicardi-Goutières syndrome (AGS) is a rare early onset childhood encephalopathy caused by persistent neuroinflammation of autoimmune origin. AGS is a genetic disorder and >50% of affected individuals bear hypomorphic mutations in ribonuclease H2 (RNase H2). All available RNase H2 mouse models so far fail to mimic the prominent CNS involvement seen in AGS. To establish a mouse model recapitulating the human disease, we deleted RNase H2 specifically in the brain, the most severely affected organ in AGS. Although RNase H2δGFAPmice lacked the nuclease in astrocytes and a majority of neurons, no disease signs were apparent in these animals. We additionally confirmed these results…
Editorial: Current concepts of cellular and biological drugs to modulate regulatory T cell activity in the clinic
2016
The Editorial on the Research Topic Current Concepts of Cellular and Biological Drugs to Modulate Regulatory T Cell Activity in the Clinic Regulatory T (Treg) cells are essential for the maintenance of peripheral tolerance and prevent the development of autoimmunity and allergy. While on the one hand being indispensable for the perpetuation of tolerance to harmless antigens or self-antigens, Treg cells contribute to cancer pathogenesis and progression (1). Hence, the potential to treat a multitude of different human diseases by pharmacological modulation of Treg cells is enormous. Consequently, this T cell population is in the focus of biomedical research and development. Currently, isolate…
Validity and reliability of the CatWalk system as a static and dynamic gait analysis tool for the assessment of functional nerve recovery in small an…
2017
Introduction: A range of behavioral testing paradigms have been developed for the research of central and peripheral nerve injuries with the help of small animal models. Following any nerve repair strategy, improved functional outcome may be the most important evidence of axon regeneration. A novel automated gait analysis system, the CatWalk™, can measure dynamic as well as static gait patterns of small animals. Of most interest in detecting functional recovery are in particular dynamic gait parameters, coordination measures, and the intensity of the animals paw prints. This article is designed to lead to a more efficient choice of CatWalk parameters in future studies concerning the functio…