Search results for "multi-objective"

showing 10 items of 220 documents

NAUTILUS method: An interactive technique in multiobjective optimization based on the nadir point

2010

Most interactive methods developed for solving multiobjective optimization problems sequentially generate Pareto optimal or nondominated vectors and the decision maker must always allow impairment in at least one objective function to get a new solution. The NAUTILUS method proposed is based on the assumptions that past experiences affect decision makers’ hopes and that people do not react symmetrically to gains and losses. Therefore, some decision makers may prefer to start from the worst possible objective values and to improve every objective step by step according to their preferences. In NAUTILUS, starting from the nadir point, a solution is obtained at each iteration which dominates t…

Mathematical optimizationInformation Systems and ManagementInteractive programmingGeneral Computer Sciencebiologymedia_common.quotation_subjectManagement Science and Operations Researchbiology.organism_classificationMulti-objective optimizationIndustrial and Manufacturing EngineeringSightNegotiationIterated functionModeling and SimulationMinificationNautilusOptimal decisionMathematicsmedia_commonEuropean Journal of Operational Research
researchProduct

Interactive Nonconvex Pareto Navigator for Multiobjective Optimization

2019

Abstract We introduce a new interactive multiobjective optimization method operating in the objective space called Nonconvex Pareto Navigator . It extends the Pareto Navigator method for nonconvex problems. An approximation of the Pareto optimal front in the objective space is first generated with the PAINT method using a relatively small set of Pareto optimal outcomes that is assumed to be given or computed prior to the interaction with the decision maker. The decision maker can then navigate on the approximation and direct the search for interesting regions in the objective space. In this way, the decision maker can conveniently learn about the interdependencies between the conflicting ob…

Mathematical optimizationInformation Systems and Managementinteractive multiobjective optimizationGeneral Computer ScienceComputer science0211 other engineering and technologies02 engineering and technologyManagement Science and Operations ResearchSpace (commercial competition)Multi-objective optimizationIndustrial and Manufacturing Engineering0502 economics and businessnonconvex problemsnavigationta113050210 logistics & transportation021103 operations researchpareto-tehokkuuspareto optimality05 social sciencesPareto principlemonitavoiteoptimointinavigointiModeling and Simulationmultiple objective programmingEuropean Journal of Operational Research
researchProduct

Modelling energy storage systems using Fourier analysis: An application for smart grids optimal management

2014

In this paper, a new and efficient model for variables representation, named F-coding, in optimal power dispatch problems for smart electrical distribution grids is proposed. In particular, an application devoted to optimal energy dispatch of Distributed Energy Resources including ideal storage devices is here considered. Electrical energy storage systems, such as any other component that must meet an integral capacity constraint in optimal dispatch problems, have to show the same energy level at the beginning and at the end of the considered timeframe for operation. The use of zero-integral functions, such as sinusoidal functions, for the synthesis of the charge and discharge course of bat…

Mathematical optimizationIntegral constraintMulti-objective evolutionary algorithmbusiness.industryComputer scienceFourier analysiEconomic dispatchSmart gridsMulti-objective optimizationEnergy storageElectrical energy storage systemSettore ING-IND/33 - Sistemi Elettrici Per L'EnergiaSettore ING-IND/31 - ElettrotecnicaSmart gridDistributed generationComponent (UML)Optimal dispatch of resourcebusinessRepresentation (mathematics)SoftwareEnergy (signal processing)Applied Soft Computing
researchProduct

Improving Computing Systems Automatic Multiobjective Optimization Through Meta-Optimization

2016

This paper presents the extension of framework for automatic design space exploration (FADSE) tool using a meta-optimization approach, which is used to improve the performance of design space exploration algorithms, by driving two different multiobjective meta-heuristics concurrently. More precisely, we selected two genetic multiobjective algorithms: 1) non-dominated sorting genetic algorithm-II and 2) strength Pareto evolutionary algorithm 2, that work together in order to improve both the solutions’ quality and the convergence speed. With the proposed improvements, we ran FADSE in order to optimize the hardware parameters’ values of the grid ALU processor (GAP) micro-architecture from a b…

Mathematical optimizationMeta-optimizationComputer scienceCycles per instructionDesign space explorationPareto principleSortingEvolutionary algorithm02 engineering and technologyComputer Graphics and Computer-Aided DesignMulti-objective optimization020202 computer hardware & architecture0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingAlgorithm designElectrical and Electronic EngineeringSoftwareIEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
researchProduct

Pareto-optimal Glowworm Swarms Optimization for Smart Grids Management

2013

This paper presents a novel nature-inspired multi-objective optimization algorithm. The method extends the glowworm swarm particles optimization algorithm with algorithmical enhancements which allow to identify optimal pareto front in the objectives space. In addition, the system allows to specify constraining functions which are needed in practical applications. The framework has been applied to the power dispatch problem of distribution systems including Distributed Energy Resources (DER). Results for the test cases are reported and discussed elucidating both numerical and complexity analysis.

Mathematical optimizationMeta-optimizationComputer scienceDerivative-free optimizationTest functions for optimizationSwarm behaviourMulti-swarm optimizationevolutionary optimization swarm-optimization pareto optimization micro-gridsMulti-objective optimizationMetaheuristicEngineering optimization
researchProduct

Simultaneous and multi-criteria optimization of TS requirements and maintenance at NPPs

2002

Abstract One of the main concerns of the nuclear industry is to improve the availability of safety-related systems at nuclear power plants (NPPs) to achieve high safety levels. The development of efficient testing and maintenance has been traditionally one of the different ways to guarantee high levels of systems availability, which are implemented at NPP through technical specification and maintenance requirements (TS&M). On the other hand, there is a widely recognized interest in using the probabilistic risk analysis (PRA) for risk-informed applications aimed to emphasize both effective risk control and effective resource expenditures at NPPs. TS&M-related parameters in a plant are associ…

Mathematical optimizationMeta-optimizationOptimization problemNuclear Energy and EngineeringComputer scienceProbabilistic-based design optimizationMulti-swarm optimizationMulti-objective optimizationBilevel optimizationMetaheuristicEngineering optimizationAnnals of Nuclear Energy
researchProduct

Developing Domain-Knowledge Evolutionary Algorithms for Network-on-Chip Application Mapping

2013

This paper addresses the Network-on-Chip (NoC) application mapping problem. This is an NP-hard problem that deals with the optimal topological placement of Intellectual Property cores onto the NoC tiles. Network-on-Chip application mapping Evolutionary Algorithms are developed, evaluated and optimized for minimizing the NoC communication energy. Two crossover and one mutation operators are proposed. It is analyzed how each optimization algorithm performs with every genetic operator, in terms of solution quality and convergence speed. Our proposed operators are compared with state-of-the-art genetic operators for permutation problems. Finally, the problem is approached in a multi-objective w…

Mathematical optimizationMutation operatorTheoretical computer scienceComputer Networks and CommunicationsComputer scienceQuality control and genetic algorithmsCrossoverEvolutionary algorithmGenetic operatorMulti-objective optimizationNetwork on a chipArtificial IntelligenceHardware and ArchitectureSimulated annealingGenetic algorithmGenetic representationSoftwareMicroprocessors and Microsystems
researchProduct

A multi-objective strategy for concurrent mapping and routing in networks on chip

2009

The design flow of network-on-chip (NoCs) include several key issues. Among other parameters, the decision of where cores have to be topologically mapped and also the routing algorithm represent two highly correlated design problems that must be carefully solved for any given application in order to optimize several different performance metrics. The strong correlation between the different parameters often makes that the optimization of a given performance metric has a negative effect on a different performance metric. In this paper we propose a new strategy that simultaneously refines the mapping and the routing function to determine the Pareto optimal configurations which optimize averag…

Mathematical optimizationNetwork on a chipRobustness (computer science)Computer scienceMultipath routingAlgorithm designFault toleranceNetwork topologyMulti-objective optimization2009 IEEE International Symposium on Parallel & Distributed Processing
researchProduct

Tangent and Normal Cones in Nonconvex Multiobjective Optimization

2000

Trade-off information is important in multiobjective optimization. It describes the relationships of changes in objective function values. For example, in interactive methods we need information about the local behavior of solutions when looking for improved search directions.

Mathematical optimizationNon-convexityTangentMulti-objective optimizationMathematics
researchProduct

Interactive Method NIMBUS for Nondifferentiable Multiobjective Optimization Problems

1997

An interactive method, NIMBUS, for nondifferentiable multiobjective optimization problems is introduced. The method is capable of handling several nonconvex locally Lipschitzian objective functions subject to nonlinear (possibly nondifferentiable) constraints. The idea of NIMBUS is that the decision maker can easily indicate what kind of improvements are desired and what kind of impairments are tolerable at the point considered. The decision maker is asked to classify the objective functions into five different classes: those to be improved, those to be improved down to some aspiration level, those to be accepted as they are, those to be impaired till some upper bound, and those allowed to …

Mathematical optimizationNonlinear systemMultiobjective optimization problemComputer sciencePoint (geometry)Aspiration levelDecision makerUpper and lower boundsMulti-objective optimization
researchProduct