Search results for "multi-objective"
showing 10 items of 220 documents
An Interactive Framework for Offline Data-Driven Multiobjective Optimization
2020
We propose a framework for solving offline data-driven multiobjective optimization problems in an interactive manner. No new data becomes available when solving offline problems. We fit surrogate models to the data to enable optimization, which introduces uncertainty. The framework incorporates preference information from a decision maker in two aspects to direct the solution process. Firstly, the decision maker can guide the optimization by providing preferences for objectives. Secondly, the framework features a novel technique for the decision maker to also express preferences related to maximum acceptable uncertainty in the solutions as preferred ranges of uncertainty. In this way, the d…
A New Paradigm in Interactive Evolutionary Multiobjective Optimization
2020
Over the years, scalarization functions have been used to solve multiobjective optimization problems by converting them to one or more single objective optimization problem(s). This study proposes a novel idea of solving multiobjective optimization problems in an interactive manner by using multiple scalarization functions to map vectors in the objective space to a new, so-called preference incorporated space (PIS). In this way, the original problem is converted into a new multiobjective optimization problem with typically fewer objectives in the PIS. This mapping enables a modular incorporation of decision maker’s preferences to convert any evolutionary algorithm to an interactive one, whe…
Multi-criteria analysis applied to multi-objective optimal pump scheduling in water systems
2019
Abstract This work presents a multi-criteria-based approach to automatically select specific non-dominated solutions from a Pareto front previously obtained using multi-objective optimization to find optimal solutions for pump control in a water supply system. Optimal operation of pumps in these utilities is paramount to enable water companies to achieve energy efficiency in their systems. The Fuzzy Technique for Order of Preference by Similarity to Ideal Solution (FTOPSIS) is used to rank the Pareto solutions found by the non-dominated sorting genetic algorithm (NSGA-II) employed to solve the multi-objective problem. Various scenarios are evaluated under leakage uncertainty conditions, res…
Introduction to General Duality Theory for Multi-Objective Optimization
1992
This is intended as a comprehensive introduction to the duality theory for vector optimization recently developed by C. Malivert and the present author [3]. It refers to arbitrarily given classes of mappings (dual elements) and extends the general duality theory proposed for scalar optimization by E. Balder, S. Kurcyusz and the present author [1] and P. Lindberg.
Multi-sensor Fusion through Adaptive Bayesian Networks
2011
Common sensory devices for measuring environmental data are typically heterogeneous, and present strict energy constraints; moreover, they are likely affected by noise, and their behavior may vary across time. Bayesian Networks constitute a suitable tool for pre-processing such data before performing more refined artificial reasoning; the approach proposed here aims at obtaining the best trade-off between performance and cost, by adapting the operating mode of the underlying sensory devices. Moreover, self-configuration of the nodes providing the evidence to the Bayesian network is carried out by means of an on-line multi-objective optimization.
Multi-objective optimization of building life cycle performance. A housing renovation case study in Northern Europe
2020
While the operational energy use of buildings is often regulated in current energy saving policies, their embodied greenhouse gas emissions still have a considerable mitigation potential. The study aims at developing a multi-objective optimization method for design and renovation of buildings incorporating the operational and embodied energy demands, global warming potential, and costs as objective functions. The optimization method was tested on the renovation of an apartment building in Denmark, mainly focusing envelope improvements as roof and exterior wall insulation and windows. Cellulose insulation has been the predominant result, together with fiber cement or aluminum-based cladding …
A new approach to portfolio selection based on forecasting
2023
In this paper we analyze the portfolio selection problem from a novel perspective based on the analysis and prediction of the time series corresponding to the portfolio’s value. Namely, we define the value of a particular portfolio at the time of its acquisition. Using the time series of historical prices of the different financial assets, we calculate backward the value that said portfolio would have had in past time periods. A damped trend model is then used to analyze this time series and to predict the future values of the portfolio, providing estimates of the mean and variance for different forecasting horizons. These measures are used to formulate the portfolio selection problem, whic…
MULTI-OBJECTIVE OPTIMISATION OF BUILDINGS AND BUILDING CLUSTERS PERFORMANCE: A LIFE CYCLE THINKING APPROACH
2021
Boosting Design Space Explorations with Existing or Automatically Learned Knowledge
2012
During development, processor architectures can be tuned and configured by many different parameters. For benchmarking, automatic design space explorations (DSEs) with heuristic algorithms are a helpful approach to find the best settings for these parameters according to multiple objectives, e.g. performance, energy consumption, or real-time constraints. But if the setup is slightly changed and a new DSE has to be performed, it will start from scratch, resulting in very long evaluation times. To reduce the evaluation times we extend the NSGA-II algorithm in this article, such that automatic DSEs can be supported with a set of transformation rules defined in a highly readable format, the fuz…
On interactive multiobjective optimization with NIMBUS® in chemical process design
2005
We study multiobjective optimization problems arising from chemical process simulation. The interactive multiobjective optimization method NIMBUS®, developed at the University of Jyvaskyla, is combined with the BALAS® process simulator, developed at the VTT Technical Research Center of Finland, in order to provide a new interactive tool for designing chemical processes. Continuous interaction between the method and the designer provides a new efficient approach to explore Pareto optimal solutions and helps the designer to learn about the behaviour of the process. As an example of how the new tool can be used, we report the results of applying it in a heat recovery system design problem rela…