Search results for "multi-objective"
showing 10 items of 220 documents
Comparison of different uncertainty techniques in urban stormwater quantity and quality modelling
2011
Abstract Urban drainage models are important tools used by both practitioners and scientists in the field of stormwater management. These models are often conceptual and usually require calibration using local datasets. The quantification of the uncertainty associated with the models is a must, although it is rarely practiced. The International Working Group on Data and Models, which works under the IWA/IAHR Joint Committee on Urban Drainage, has been working on the development of a framework for defining and assessing uncertainties in the field of urban drainage modelling. A part of that work is the assessment and comparison of different techniques generally used in the uncertainty assessm…
Smart district energy optimization of flexible energy units for the integration of local energy storage
2017
Several changes are involving electrical power systems, especially distribution networks. For this reason, the actors in charge of managing and operating reliably these grids are facing many technical issues regarding demand and supply balancing, Renewable Energy Sources and Electric Vehicles integration, peak load shaving, etc. In this context, many energy actions have been implemented for providing services to the power system managers by means of prosumers' demand and/or supply flexibility. This study reports the development of a centralized energy management solution for smart grids equipped with local storage devices, RES, consumers and other energy facilities in a district context. Th…
INTERNAL PRESSURE AND COUNTERPUNCH ACTION DESIGN IN Y-SHAPED TUBE HYDROFORMING PROCESSES: A MULTI OBJECTIVE OPTIMISATION APPROACH
2009
In sheet metal forming most of the problems are multi-objective problems, generally characterised by conflicting objectives. A classical approach to investigate such kind of problems is focused on a combination of multiple objectives into a unique objective function to be optimised. Actually, in metal forming processes optimisation two main phases have to be developed in order to reach an optimal solution: the former is the modelling phase (definition of the design variables and objective function) and the latter concerns the computational aspect (numerical simulations or experiment to be developed). In this paper, an integration between numerical simulations, response surface methodology a…
Genetic Algorithm Optimized Grid-based RF Fingerprint Positioning in Heterogeneous Small Cell Networks
2015
In this paper we propose a novel optimization algorithm for grid-based RF fingerprinting to improve user equipment (UE) positioning accuracy. For this purpose we have used Multi-objective Genetic Algorithm (MOGA) which enables autonomous calibration of gridcell layout (GCL) for better UE positioning as compared to that of the conventional fingerprinting approach. Performance evaluations were carried out using two different training data-sets consisting of Minimization of Drive Testing measurements obtained from a dynamic system simulation in a heterogeneous LTE small cell environment. The robustness of the proposed method has been tested analyzing positioning results from two different area…
Wastewater treatment plant design and operation under multiple conflicting objective functions
2013
Wastewater treatment plant design and operation involve multiple objective functions, which are often in conflict with each other. Traditional optimization tools convert all objective functions to a single objective optimization problem (usually minimization of a total cost function by using weights for the objective functions), hiding the interdependencies between different objective functions. We present an interactive approach that is able to handle multiple objective functions simultaneously. As an illustration of our approach, we consider a case study of plant-wide operational optimization where we apply an interactive optimization tool. In this tool, a commercial wastewater treatment …
A Multi-Objective Approach to Optimize a Periodic Maintenance Policy
2012
The present paper proposes a multi-objective approach to find out an optimal periodic maintenance policy for a repairable and stochastically deteriorating multi-component system over a finite time horizon. The tackled problem concerns the determination of the system elements to replace at each scheduled and periodical system inspection by ensuring the simultaneous minimization of both the expected total maintenance cost and the expected global system unavailability time. It is assumed that in the case of system elements failure they are instantaneously detected and repaired by means of minimal repair actions in order to rapidly restore the system. A nonlinear integer mathematical programmi…
ECONOMIC-STATISTICAL DESIGN APPROACH FOR A VSSI X-BAR CHART CONSIDERING TAGUCHI LOSS FUNCTION AND RANDOM PROCESS SHIFTS
2014
Economic design approaches of control charts are commonly based on the assumption that various cost parameters values and the occurrence risk of assignable causes have to be a priori known with precision. However, in real operative contexts, such parameters can be really difficult to accurately estimate, especially considering costs arising from out-of-control conditions of the process. As consequence, pure economic design approaches can involve chart schemes with low statistical performance. To overcome such limitation, it is herein proposed a multi-objective economic-statistical design approach for an adaptive X-bar chart. In particular, such approach aims at the minimization of both the…
EABOT – Energetic analysis as a basis for robust optimization of trigeneration systems by linear programming
2008
Abstract The optimization of synthesis, design and operation in trigeneration systems for building applications is a quite complex task, due to the high number of decision variables, the presence of irregular heat, cooling and electric load profiles and the variable electricity price. Consequently, computer-aided techniques are usually adopted to achieve the optimal solution, based either on iterative techniques, linear or non-linear programming or evolutionary search. Large efforts have been made in improving algorithm efficiency, which have resulted in an increasingly rapid convergence to the optimal solution and in reduced calculation time; robust algorithm have also been formulated, ass…
Robust Multi-Objective Optimal dispatch of Distributed Energy Resources in Micro-Grids
2011
Modern distribution systems are implemented through micro grids: small power networks where generation is close to consumption and ICT supports the coordinated management of the different energy resources. In such systems, the central control unit manages energy dispatch from the different sources according to different criteria (technical, economical and environmental) and takes care of tertiary regulation. Such optimization for the tertiary regulation is performed with a time interval that typically is of 24 hours. This is due to the fact that it is necessary to take into account the charge and discharge cycles of storage systems. On the other hand, such long time leads to large errors in…
An execution, monitoring and replanning approach for optimal energy management in microgrids
2011
abstract This work develops a new approach for optimal energy management of electrical distribution ‘smart-grids’. Optimality aims at improving sustainability through the minimization of carbon emissions and atreducing production costs and maximizing quality. Input data are the forecasted loads and productionsfrom renewable generation units, output data are a set of control actions for the actuators. Theconsidered electrical distribution system includes storage units that must be considered over a 24 h timeinterval, to consider an entire charge and discharge cycle. The objectives for the optimal management ofdistributed (renewables and not) generation are technical, economical and environme…