Search results for "multiferroics"
showing 5 items of 45 documents
Cluster superconductivity in the magnetoelectric Pb(Fe1/2Sb1/2)O3 ceramics
2016
We report the observation of cluster (local) superconductivity in the magnetoelectric Pb(Fe1/2Sb1/2)O3 ceramics prepared at a hydrostatic pressure of 6 GPa and temperatures 1200-1800 K to stabilize the perovskite phase. The superconductivity is manifested by an abrupt drop of the magnetic susceptibility at the critical temperature TC 7 K. Both the magnitude of this drop and TC decrease with magnetic field increase. Similarly, the low-field paramagnetic absorption measured by EPR spectrometer drops significantly below TC as well. The observed effects and their critical magnetic field dependence are interpreted as manifestation of the superconductivity and Meissner effect in metallic Pb nanoc…
Determination of surface and interface magnetic properties for the multiferroic heterostructure Co/BaTiO3using spleed and arpes
2016
Co/BaTiO$_3$(001) is one of the most interesting multiferroic heterostructures as it combines different ferroic phases, setting this way the fundamentals for innovative technical applications. Various theoretical approaches have been applied to investigate the electronic and magnetic properties of Co/BaTiO$_3$(001). Here we determine the magnetic properties of 3 ML Co/BaTiO$_3$ by calculating spin-polarized electron diffraction as well as angle-resolved photoemission spectra, with both methods being well established as surface sensitive techniques. Furthermore, we discuss the impact of altering the BaTiO$_3$ polarization on the spectra and ascribe the observed changes to characteristic deta…
Physical properties of (1−x)Ba0.95Pb0.05TiO3+xCo2O3 (x=0, 0.1, 0.3, 0.5, 1.0, 2.0wt%) ceramics
2015
The paper reports studies of the (1−x)Ba0.95Pb0.05TiO3 – xCo2O3 (x≤0.02) ceramics. Results of X-ray powder diffraction, dielectric, magnetic and IR measurements, as well as ab initio simulations are presented. The Co-doping induces small decrease of the (c/a) tetragonality of the perovskite lattice and leads to the gradual shift of the ferroelectric transition temperature from 398 K for x=0 down to 357 K for x=0.02. The conductivity activation energies are in the range 0.8–0.9 eV in agreement with the calculations. The high-temperature conductivity can be ascribed by the migration of oxygen vacancies introduced to compensate the charge deficiency due to Co3+ valence at the B-site of the per…
Orientation of the electric field gradient and ellipticity of the magnetic cycloid in multiferroic BiFeO3
2016
This work was supported by Uniwersytet Pedagogiczny.
Heat capacity and thermal conductivity of multiferroics Bi1-xPrxFeO3
2019
The heat capacity and thermal conductivity of multiferroics Bi1–xPrxFeO3 (0 ≤ x ≤ 0.50) has been studied in the temperature range of 130–800 K. A slight substitution of praseodymium for bismuth is found to lead to a noticeable shift of the antiferromagnetic phase transition temperature whilst the heat capacity increases. The temperature dependences of the heat capacity and thermal conductivity exhibit additional anomalies during phase transitions. The experimental results suggest that the excess heat capacity can be attributed to the Schottky effect for three-level states. The basic mechanisms of the heat transfer of phonons are highlighted and the dependence of the mean free path on temper…