Search results for "multiferroics"

showing 5 items of 45 documents

Cluster superconductivity in the magnetoelectric Pb(Fe1/2Sb1/2)O3 ceramics

2016

We report the observation of cluster (local) superconductivity in the magnetoelectric Pb(Fe1/2Sb1/2)O3 ceramics prepared at a hydrostatic pressure of 6 GPa and temperatures 1200-1800 K to stabilize the perovskite phase. The superconductivity is manifested by an abrupt drop of the magnetic susceptibility at the critical temperature TC 7 K. Both the magnitude of this drop and TC decrease with magnetic field increase. Similarly, the low-field paramagnetic absorption measured by EPR spectrometer drops significantly below TC as well. The observed effects and their critical magnetic field dependence are interpreted as manifestation of the superconductivity and Meissner effect in metallic Pb nanoc…

SuperconductivityCondensed Matter - Materials ScienceMaterials scienceCondensed matter physicsGeneral Physics and AstronomyMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesMagnetic susceptibilityvisual_art0103 physical sciencesvisual_art.visual_art_mediumCluster (physics)MultiferroicsCeramic010306 general physics0210 nano-technology
researchProduct

Determination of surface and interface magnetic properties for the multiferroic heterostructure Co/BaTiO3using spleed and arpes

2016

Co/BaTiO$_3$(001) is one of the most interesting multiferroic heterostructures as it combines different ferroic phases, setting this way the fundamentals for innovative technical applications. Various theoretical approaches have been applied to investigate the electronic and magnetic properties of Co/BaTiO$_3$(001). Here we determine the magnetic properties of 3 ML Co/BaTiO$_3$ by calculating spin-polarized electron diffraction as well as angle-resolved photoemission spectra, with both methods being well established as surface sensitive techniques. Furthermore, we discuss the impact of altering the BaTiO$_3$ polarization on the spectra and ascribe the observed changes to characteristic deta…

Surface (mathematics)Condensed Matter - Materials ScienceMaterials scienceCondensed matter physicsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesHeterojunctionAngle-resolved photoemission spectroscopy02 engineering and technologyElectronic structure021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSpectral lineCondensed Matter::Materials ScienceElectron diffraction0103 physical sciencesGeneral Materials ScienceMultiferroics010306 general physics0210 nano-technologyPolarization (electrochemistry)Journal of Physics: Condensed Matter
researchProduct

Physical properties of (1−x)Ba0.95Pb0.05TiO3+xCo2O3 (x=0, 0.1, 0.3, 0.5, 1.0, 2.0wt%) ceramics

2015

The paper reports studies of the (1−x)Ba0.95Pb0.05TiO3 – xCo2O3 (x≤0.02) ceramics. Results of X-ray powder diffraction, dielectric, magnetic and IR measurements, as well as ab initio simulations are presented. The Co-doping induces small decrease of the (c/a) tetragonality of the perovskite lattice and leads to the gradual shift of the ferroelectric transition temperature from 398 K for x=0 down to 357 K for x=0.02. The conductivity activation energies are in the range 0.8–0.9 eV in agreement with the calculations. The high-temperature conductivity can be ascribed by the migration of oxygen vacancies introduced to compensate the charge deficiency due to Co3+ valence at the B-site of the per…

Valence (chemistry)Materials scienceCondensed matter physicsProcess Chemistry and TechnologyTransition temperatureAb initioDielectricConductivityFerroelectricitySurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsMaterials ChemistryCeramics and CompositesMultiferroicsPowder diffractionCeramics International
researchProduct

Orientation of the electric field gradient and ellipticity of the magnetic cycloid in multiferroic BiFeO3

2016

This work was supported by Uniwersytet Pedagogiczny.

crystal structureCondensed Matter - Materials Sciencemagnetic cycloidMaterials scienceCondensed matter physicsMagnetic momentField (physics)Mössbauer spectroscopyMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technologyMultiferroic021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesMagnetic field0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]Multiferroics010306 general physics0210 nano-technologyAxial symmetryHyperfine structureElectric field gradientPrincipal axis theorem
researchProduct

Heat capacity and thermal conductivity of multiferroics Bi1-xPrxFeO3

2019

The heat capacity and thermal conductivity of multiferroics Bi1–xPrxFeO3 (0 ≤ x ≤ 0.50) has been studied in the temperature range of 130–800 K. A slight substitution of praseodymium for bismuth is found to lead to a noticeable shift of the antiferromagnetic phase transition temperature whilst the heat capacity increases. The temperature dependences of the heat capacity and thermal conductivity exhibit additional anomalies during phase transitions. The experimental results suggest that the excess heat capacity can be attributed to the Schottky effect for three-level states. The basic mechanisms of the heat transfer of phonons are highlighted and the dependence of the mean free path on temper…

heat capacityMaterials sciencePraseodymiumMultiferroicschemistry.chemical_elementThermodynamics02 engineering and technology01 natural sciencesHeat capacityBismuthThermal conductivity0103 physical sciencesMaterials Chemistry:NATURAL SCIENCES:Physics [Research Subject Categories]Multiferroicsthermal conductivityElectrical and Electronic Engineering010302 applied physicsAtmospheric temperature range021001 nanoscience & nanotechnologyCondensed Matter PhysicsElectronic Optical and Magnetic MaterialschemistryControl and Systems EngineeringCeramics and Composites0210 nano-technology
researchProduct