Search results for "multilayered"
showing 10 items of 29 documents
A discontinuous Galerkin formulation for nonlinear analysis of multilayered shells refined theories
2023
A novel pure penalty discontinuous Galerkin method is proposed for the geometrically nonlinear analysis of multilayered composite plates and shells, modelled via high-order refined theories. The approach allows to build different two-dimensional equivalent single layer structural models, which are obtained by expressing the covariant components of the displacement field through-the-thickness via Taylor’s polynomial expansion of different order. The problem governing equations are deduced starting from the geometrically nonlinear principle of virtual displacements in a total Lagrangian formulation. They are addressed with a pure penalty discontinuous Galerkin method using Legendre polynomial…
Buckling analysis of multilayered structures using high-order theories and the implicit-mesh discontinuous Galerkin method
2022
This work presents a novel formulation for the linear buckling analysis of multilayered shells. The formulation employs high-order Equivalent-Single-Layer (ESL) shell theories based on the through-the-thickness expansion of the covariant components of the displacement field, whilst the corresponding buckling problem is derived using the Euler’s method. The novelty of the formulation regards the solution of the governing equations, which is obtained via implicit-mesh discontinuous Galerkin (DG) schemes. The DG method is a high-order accurate numerical technique based on a discontinuous representation of the solution among the mesh elements and on the use of suitably defined boundary integral…
A unified formulation for multilayered smart plate advanced models
2017
Magneto-electro-elastic (MEE) composite materials are attracting increasing consideration as they couple mechanical, electrical and magnetic fields and this makes them particularly suitable for smart applications. They are often employed as multilayered configurations that appear to be more effective than bulk MEE composites. Thus, reliable and efficient modelling tools are required for an effective design. The present talk deals with a unified formulation to derive advanced models for multilayered MEE plates. The approach is based on the condensation of the electro-magnetic state into the plate kinematics. This leads to models involving kinematical variables only, which takes the multifiel…
Equivalent-Single-Layer discontinuous Galerkin methods for static analysis of multilayered shells
2021
Abstract An original formulation for the elastic analysis of multilayered shells is presented in this work. The key features of the formulation are: the representation of the shell mean surface via a generic system of curvilinear coordinates; the unified treatment of general shell theories via an Equivalent-Single-Layer approach based on the through-the-thickness expansion of the covariant components of the displacement field; and an Interior Penalty discontinuous Galerkin scheme for the solution of the set of governing equations. The combined use of these features enables a high-order solution of the multilayered shell problem. Several numerical tests are presented for isotropic, orthotrop…
High-fidelity analysis of multilayered shells with cut-outs via the discontinuous Galerkin method
2021
Abstract A novel numerical method for the analysis of multilayered shells with cut-outs is presented. In the proposed approach, the shell geometry is represented via either analytical functions or NURBS parametrizations , while generally-shaped cut-outs are defined implicitly within the shell modelling domain via a level set function . The multilayered shell problem is addressed via the Equivalent-Single-Layer approach whereby high-order polynomial functions are employed to approximate the covariant components of the displacement field throughout the shell thickness. The shell governing equations are then derived from the Principle of Virtual Displacements of three-dimensional elasticity an…
Transverse shear warping functions for anisotropic multilayered plates
2012
In this work, transverse shear warping functions for an equivalent single layer plate model are formulated from a variational approach. The part of the strain energy which involves the shear phenomenon is expressed in function of the warping functions and their derivatives. The variational calculus leads to a differential system of equations which warping functions must verify. Solving this system requires the choice of values for the (global) shear strains and their derivatives. A particular choice, which is justified for cross-ply laminates, leads to excellent results. For single layer isotropic and orthotropic plates, an analytical expression of the warping functions is given. They invol…
Discontinuous Galerkin models for composite multilayered shells with higher order kinematics
2021
Composite multilayered shells are widely employed in aerospace, automotive and civil engineering as weight-saving structural components. In multilayered shells, despite its versatility, the interplay between the curved geometry and the properties of the composite layers induces a complex distribution of the mechanical fields, which must be accurately resolved to safely employ generally curved composite shells as load-bearing structures. The problem can be addressed through the two-dimensional shell theories, which are based on suitable assumptions on the behavior of the mechanical fields throughout the thickness of the considered structures and are a viable strategy for reducing the computa…
Variable kinematics models for multilòayered smart plates
2015
Families of layer-wise and equivalent single layer advanced finite elements for the geometrically nonlinear analysis of smart multilayered plates are formulated in a unified framework. The proposed modeling strategy reduces the multifield problems to an effective mechanical plate by the condensation of the electromechanical state into the plate kinematics, which is assumed as a variable order expansion along the plate thickness. Numerical results are presented to validate the proposed modeling approach and finite elements and to investigate their features.
Finite deformation analysis of laminated shell via the discontinuous Galerkin method
2022
In this work, we propose a novel formulation for the large displacements and post-buckling response analysis of laminated composite shell structures. In order to accurately recover the solution in the case of multilayered shells, the covariant components of the displacement field are approximated through the thickness using high-order structural theories. The non-linear two-dimensional total Lagrangian formulation is obtained starting from the Principle of Virtual Displacements for the three-dimensional elasticity assuming a linear constitutive relationship between the second Piola–Kirchhoff stress tensor and the Green-Lagrange strain tensor. The discontinuous Galerkin method is used in com…
X-ray fluorescence investigation of gilded and enamelled silver: The case study of four medieval processional crosses from central Italy
2013
Abstract The presence of multilayered structures is common in such cultural artefacts as paintings, corroded metals, objects that underwent a whatever form of surface qualification. One of the most usual and complete ways to investigate such structures is observing a cross section, which requires sampling. There are however situations where at least part of the stratigraphic information can be derived non-destructively: the literature shows that X-ray fluorescence (XRF) has frequently been used, in recent years, for this purpose, with special regard to paintings and gilded metals. Aim of this paper is to further explore the suitability of XRF-based techniques to characterise multilayered st…