Search results for "multiple"

showing 10 items of 2678 documents

Multiple myeloma-derived exosomes are enriched of amphiregulin (AREG) and activate the epidermal growth factor pathway in the bone microenvironment l…

2019

Background Multiple myeloma (MM) is a clonal plasma cell malignancy associated with osteolytic bone disease. Recently, the role of MM-derived exosomes in the osteoclastogenesis has been demonstrated although the underlying mechanism is still unknown. Since exosomes-derived epidermal growth factor receptor ligands (EGFR) are involved in tumor-associated osteolysis, we hypothesize that the EGFR ligand amphiregulin (AREG) can be delivered by MM-derived exosomes and participate in MM-induced osteoclastogenesis. Methods Exosomes were isolated from the conditioned medium of MM1.S cell line and from bone marrow (BM) plasma samples of MM patients. The murine cell line RAW264.7 and primary human CD1…

0301 basic medicineCancer ResearchOsteoclastsPlasma cellInterleukin 8ExosomesLigandsMice0302 clinical medicineEpidermal growth factorOsteogenesisMultiple myelomaBone diseaseTumor MicroenvironmentEpidermal growth factor receptorbiologyChemistryAntibodies MonoclonalOsteoblastCell DifferentiationHematologylcsh:Diseases of the blood and blood-forming organslcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensErbB Receptorsmedicine.anatomical_structureOncology030220 oncology & carcinogenesislcsh:RC254-282Amphiregulin03 medical and health sciencesAmphiregulinOsteoclastCell Line TumormedicineCell AdhesionAnimalsHumansMolecular BiologyOsteoblastsEpidermal Growth Factorlcsh:RC633-647.5Epidermal growth factor receptorResearchMesenchymal stem cellInterleukin-8Mesenchymal Stem CellsMicrovesiclesExosome030104 developmental biologyRAW 264.7 CellsCancer researchbiology.protein
researchProduct

Targeting Immune Modulators in Glioma While Avoiding Autoimmune Conditions

2021

Simple Summary Glioblastoma multiforme is a futile disease usually leading to the patient’s death within one year post-diagnosis; therefore, novel treatment options are desperately needed. In this regard, activation of the inert immune system has moved into focus in recent years. Malignant brain tumors, as well as autoimmune diseases, elicit aberrant immune responses. In this way, glioma escapes the host’s immune system and, thus, activation of the immune response in order to reduce tumor tolerance can serve as an alternative treatment option. Immune checkpoint modulators in combination with traditional therapies have gained attention in both glioma and autoimmune diseases. In this review, …

0301 basic medicineCancer Researchautoimmune disease ; immune checkpoints ; immunotherapy ; clinical trials ; Gliom ; gliomamedicine.medical_treatmentautoimmune diseaseContext (language use)Review03 medical and health sciences0302 clinical medicineImmune systemgliomaGliomamedicineRC254-282Autoimmune diseaseclinical trialsTumor microenvironmentbusiness.industryMultiple sclerosisNeoplasms. Tumors. Oncology. Including cancer and carcinogensImmunosuppressionImmunotherapybiochemical phenomena metabolism and nutritionimmune checkpointsmedicine.disease030104 developmental biologyOncology030220 oncology & carcinogenesisCancer researchimmunotherapybusinessCancers
researchProduct

Genetic variations in the PSMA6 and PSMC6 proteasome genes are associated with multiple sclerosis and response to interferon‑β therapy in Latvians

2021

Several polymorphisms in genes related to the ubiquitin-proteasome system exhibit an association with pathogenesis and prognosis of various human autoimmune diseases. Our previous study reported the association between multiple sclerosis (MS) and the PSMA3-rs2348071 polymorphism in the Latvian population. The current study aimed to evaluate the PSMA6 and PSMC6 genetic variations, their interaction between each other and with the rs2348071, on the susceptibility to MS risk and response to therapy in the Latvian population. PSMA6-rs2277460, -rs1048990 and PSMC6-rs2295826, -rs2295827 were genotyped in the MS case/control study and analysed in terms of genotype-protein correlation network. The …

0301 basic medicineCancer Researcheducation.field_of_studybusiness.industryMultiple sclerosisHaplotypePopulationPSMA6Single-nucleotide polymorphismGeneral MedicineDiseasePSMA3medicine.diseasePSMC603 medical and health sciences030104 developmental biology0302 clinical medicineImmunology and Microbiology (miscellaneous)030220 oncology & carcinogenesisImmunologyMedicinebusinesseducationExperimental and Therapeutic Medicine
researchProduct

Replacement of miR-155 Elicits Tumor Suppressive Activity and Antagonizes Bortezomib Resistance in Multiple Myeloma

2019

Aberrant expression of microRNAs (miRNAs) has been associated to the pathogenesis of multiple myeloma (MM). While miR-155 is considered a therapeutic target in several malignancies, its role in MM is still unclear. The analysis of miR-155 expression indicates its down-regulation in MM patient-derived as compared to healthy plasma cells, thus pointing to a tumor suppressor role in this malignancy. On this finding, we investigated miR-155 replacement as a potential anti-tumor strategy in MM. The miR-155 enforced expression triggered anti-proliferative and pro-apoptotic effects in vitro. Given the lower miR-155 levels in bortezomib-resistant as compared to sensitive MM cells, we analyzed the p…

0301 basic medicineCancer Researchlcsh:RC254-282ArticlemiR-155PathogenesismiR-15503 medical and health sciences0302 clinical medicineIn vivomicroRNAmedicineMultiple myelomamiRNAmicroRNABortezomibbusiness.industrybortezomiblcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensmedicine.diseaseIn vitromultiple myeloma030104 developmental biologyOncologyProteasome030220 oncology & carcinogenesisCancer researchbusinessmedicine.drugCancers
researchProduct

Immunomodulatory activity of microRNAs: potential implications for multiple myeloma treatment

2015

Multiple myeloma (MM) is an incurable plasma cell neoplasm accounting for about 10% of all hematologic malignancies. Recently, emerging evidence is disclosing the complexity of bone marrow interactions between MM cells and infiltrating immune cells, which have been reported to promote proliferation, survival and drug resistance of tumor cells. MicroRNAs (miRNAs) are small non-coding RNA molecules with regulatory functions in the cell, whose expression has predictive and prognostic value in different malignancies. MiRNAs are gaining increasing interest due to their capability to polarize the immune-response through different mechanisms, which include the molecular reprogramming of immune cel…

0301 basic medicineCancer Researchmedicine.medical_treatmentCellOsteoclastsAntineoplastic AgentsCD8-Positive T-LymphocytesBiologyBioinformaticsT-Lymphocytes RegulatoryImmunomodulation03 medical and health sciencesTh2 Cells0302 clinical medicineImmune systemBone MarrowDrug DiscoverymicroRNAmedicineHumansMultiple myelomamiRNAPharmacologyImmune-responseTumor immunology.MacrophagesMicroRNADendritic CellsImmunotherapyTh1 CellsPlasma cell neoplasmmedicine.diseaseGene Expression Regulation NeoplasticKiller Cells NaturalMicroRNAs030104 developmental biologymedicine.anatomical_structureOncology030220 oncology & carcinogenesisImmunotherapyBone marrowMultiple MyelomaReprogrammingCurrent Cancer Drug Targets
researchProduct

Vγ9Vδ2 T Cells as Strategic Weapons to Improve the Potency of Immune Checkpoint Blockade and Immune Interventions in Human Myeloma

2018

The advent of immune checkpoint (ICP) blockade has introduced an unprecedented paradigm shift in the treatment of cancer. Though very promising, there is still a substantial proportion of patients who do not respond or develop resistance to ICP blockade. In vitro and in vivo models are eagerly needed to identify mechanisms to maximize the immune potency of ICP blockade and overcome primary and acquired resistance to ICP blockade. Vγ9Vδ2 T cells isolated from the bone marrow (BM) from multiple myeloma (MM) are excellent tools to investigate the mechanisms of resistance to PD-1 blockade and to decipher the network of mutual interactions between PD-1 and the immune suppressive tumor microenvir…

0301 basic medicineCancer Researchmedicine.medical_treatmentMini Reviewlcsh:RC254-28203 medical and health sciences0302 clinical medicineImmune systemIn vivoMedicinetumor vaccinationVg9Vd2 T cells immune checkpoint blockade immunotherapy tumor vaccination multiple myelomaMultiple myelomaTumor microenvironmentVg9Vd2 T cellsbusiness.industryImmunotherapyimmune checkpoint blockadelcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensmedicine.diseaseVγ9Vδ2 T cellsImmune checkpointBlockademultiple myeloma030104 developmental biologymedicine.anatomical_structureOncology030220 oncology & carcinogenesisCancer researchBone marrowimmunotherapybusinessFrontiers in Oncology
researchProduct

Tumor Microenvironment And Epithelial Mesenchymal Transition As Targets To Overcome Tumor Multidrug Resistance

2020

It is well established that multifactorial drug resistance hinders successful cancer treatment. Tumor cell interactions with the tumor microenvironment (TME) are crucial in epithelial-mesenchymal transition (EMT) and multidrug resistance (MDR). TME-induced factors secreted by cancer cells and cancer-associated fibroblasts (CAFs) create an inflammatory microenvironment by recruiting immune cells. CD11b+/Gr-1+ myeloid-derived suppressor cells (MDSCs) and inflammatory tumor associated macrophages (TAMs) are main immune cell types which further enhance chronic inflammation. Chronic inflammation nurtures tumor-initiating/cancer stem-like cells (CSCs), induces both EMT and MDR leading to tumor re…

0301 basic medicineCancer Researchmedicine.medical_treatmentMultidrug resistanceTargeted therapyTargeted therapy0302 clinical medicineCancer-Associated FibroblastsNeoplasmsAntineoplastic Combined Chemotherapy ProtocolsTumor-Associated MacrophagesTumor MicroenvironmentPharmacology (medical)HypoxiaTOR Serine-Threonine KinasesSmall moleculesChemotherapy ; Hypoxia ; Inflammation ; Microenvironment ; Multidrug resistance ; Small molecules ; Targeted therapy.Drug Resistance Multiple3. Good healthDNA DemethylationGene Expression Regulation NeoplasticInfectious DiseasesOncology030220 oncology & carcinogenesisInflammation MediatorsEpithelial-Mesenchymal TransitionStromal cellMicroenvironmentBiologyProinflammatory cytokine03 medical and health sciencesCell Line TumormedicineAnimalsHumansChemotherapyEpithelial–mesenchymal transitionPharmacologyInflammationTumor microenvironmentCancerHypoxia-Inducible Factor 1 alpha Subunitmedicine.diseaseHistone Deacetylase InhibitorsMultiple drug resistanceDisease Models Animal030104 developmental biologyDrug Resistance NeoplasmCancer cellCancer research
researchProduct

Mechanisms of Immune Evasion in Multiple Myeloma: Open Questions and Therapeutic Opportunities

2021

Simple Summary The growing interest in immunotherapy for the treatment of multiple myeloma demands a deep knowledge of the complex interactions between malignant and immune cells within the bone marrow. Indeed, understanding the cellular and molecular mechanisms underlying this network should represent the basis for the design of novel patient-oriented biological therapeutic approaches. Here, we describe the role of the main immune components of the myeloma niche along disease evolution and their implication in impairing/improving the response to anti-cancer treatments. Additionally, we provided an overview of the potential weakness of this pro-tumor interplay, evidencing novel therapeutic …

0301 basic medicineCancer Researchmedicine.medical_treatmentReview03 medical and health sciences0302 clinical medicineMedicinetumor immunologyElotuzumabMultiple myelomaRC254-282IsatuximabMonoclonal antibodiebusiness.industryDaratumumabNeoplasms. Tumors. Oncology. Including cancer and carcinogensImmunotherapymedicine.diseasePomalidomideanti-cancer immune responseThalidomidemultiple myeloma030104 developmental biologyOncology030220 oncology & carcinogenesisImmunologyimmunotherapymonoclonal antibodiesbusinessMonoclonal gammopathy of undetermined significancemedicine.drugCancers
researchProduct

Role of Hypoxia and the Adenosine System in Immune Evasion and Prognosis of Patients with Brain Metastases of Melanoma: A Multiplex Whole Slide Immun…

2020

Simple Summary The introduction of immune-checkpoint inhibitors improved the therapeutic landscape for patients with advanced malignant melanoma. However, many patients, including patients with melanoma brain metastases, do not derive benefit from immune-checkpoint blockade. Hence, biomarkers are needed to identify potential mechanisms of resistance and optimize patient selection. This study aimed to explore the role of hypoxia-mediated immunosuppression within the tumor microenvironment of patients with metastatic melanoma using multiplex immunofluorescence. We analyzed the prognostic relevance of the hypoxia surrogate marker GLUT-1, the adenosine-synthesizing ectoenzymes CD73/CD39, and th…

0301 basic medicineCancer Researchmultiplex immunohistochemistrymedicine.medical_treatmentimmune checkpoint inhibitorIpilimumablcsh:RC254-282Articlespatial statistics03 medical and health sciences0302 clinical medicineImmune systemmedicineCytotoxic T celltumor microenvironmentipilimumabradiotherapyTumor microenvironmentimmunosuppressionbusiness.industryhypoxiaMelanomaImmunosuppressionmedicine.diseaselcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensCTL*030104 developmental biologyOncologyadenosine030220 oncology & carcinogenesisCancer researchbusinessCD8medicine.drugCancers
researchProduct

Chemopreventive Property of Sencha Tea Extracts towards Sensitive and Multidrug-Resistant Leukemia and Multiple Myeloma Cells

2020

The popular beverage green tea possesses chemopreventive activity against various types of tumors. However, the effects of its chemopreventive effect on hematological malignancies have not been defined. In the present study, we evaluated antitumor efficacies of a specific green tea, sencha tea, on sensitive and multidrug-resistant leukemia and a panel of nine multiple myelomas (MM) cell lines. We found that sencha extracts induced cytotoxicity in leukemic cells and MM cells to different extents, yet its effect on normal cells was limited. Furthermore, sencha extracts caused G2/M and G0/G1 phase arrest during cell cycle progression in CCRF/CEM and KMS-12-BM cells, respectively. Specifically,…

0301 basic medicineCell Survivalnatural productsgreen tealcsh:QR1-502Cell morphologychemotherapyBiochemistryArticlelcsh:Microbiologyfunctional foodPhosphatidylinositol 3-Kinases03 medical and health sciences0302 clinical medicineCell Line TumorHumansCytotoxicityMolecular BiologyProtein kinase BcatechinsPI3K/AKT/mTOR pathwaypolyphenolsCell ProliferationMembrane Potential MitochondrialLeukemiadrug resistanceTeaPlant ExtractsChemistryCell growthCell CycleNF-kappa BCell cycleAntineoplastic Agents PhytogenicDrug Resistance MultipleGene Expression Regulation Neoplastic030104 developmental biologyDrug Resistance NeoplasmApoptosisCell culture030220 oncology & carcinogenesisflavonoidsCancer researchmicroarray analysisMultiple MyelomaReactive Oxygen SpeciesProto-Oncogene Proteins c-aktSignal TransductionBiomolecules
researchProduct