Search results for "multivariate statistics"
showing 10 items of 290 documents
On the convenience of heteroscedasticity in highly multivariate disease mapping
2019
Highly multivariate disease mapping has recently been proposed as an enhancement of traditional multivariate studies, making it possible to perform the joint analysis of a large number of diseases. This line of research has an important potential since it integrates the information of many diseases into a single model yielding richer and more accurate risk maps. In this paper we show how some of the proposals already put forward in this area display some particular problems when applied to small regions of study. Specifically, the homoscedasticity of these proposals may produce evident misfits and distorted risk maps. In this paper we propose two new models to deal with the variance-adaptiv…
Multiple Comparisons of Treatments with Stable Multivariate Tests in a Two‐Stage Adaptive Design, Including a Test for Non‐Inferiority
2000
The application of stabilized multivariate tests is demonstrated in the analysis of a two-stage adaptive clinical trial with three treatment arms. Due to the clinical problem, the multiple comparisons include tests of superiority as well as a test for non-inferiority, where non-inferiority is (because of missing absolute tolerance limits) expressed as linear contrast of the three treatments. Special emphasis is paid to the combination of the three sources of multiplicity - multiple endpoints, multiple treatments, and two stages of the adaptive design. Particularly, the adaptation after the first stage comprises a change of the a-priori order of hypotheses.
Some extensions of multivariate sliced inverse regression
2007
Multivariate sliced inverse regression (SIR) is a method for achieving dimension reduction in regression problems when the outcome variable y and the regressor x are both assumed to be multidimensional. In this paper, we extend the existing approaches, based on the usual SIR I which only uses the inverse regression curve, to methods using properties of the inverse conditional variance. Contrary to the existing ones, these new methods are not blind for symmetric dependencies and rely on the SIR II or SIRα. We also propose their corresponding pooled slicing versions. We illustrate the usefulness of these approaches on simulation studies.
Gaussian component mixtures and CAR models in Bayesian disease mapping
2012
Hierarchical Bayesian models involving conditional autoregression (CAR) components are commonly used in disease mapping. An alternative model to the proper or improper CAR is the Gaussian component mixture (GCM) model. A review of CAR and GCM models is provided in univariate settings where only one disease is considered, and also in multivariate situations where in addition to the spatial dependence between regions, the dependence among multiple diseases is analyzed. A performance comparison between models using a set of simulated data to help illustrate their respective properties is reported. The results show that both in univariate and multivariate settings, both models perform in a comp…
Some links between conditional and coregionalized multivariate Gaussian Markov random fields
2020
Abstract Multivariate disease mapping models are attracting considerable attention. Many modeling proposals have been made in this area, which could be grouped into three large sets: coregionalization, multivariate conditional and univariate conditional models. In this work we establish some links between these three groups of proposals. Specifically, we explore the equivalence between the two conditional approaches and show that an important class of coregionalization models can be seen as a large subclass of the conditional approaches. Additionally, we propose an extension to the current set of coregionalization models with some new unexplored proposals. This extension is able to reproduc…
Prospective surveillance of multivariate spatial disease data
2012
Surveillance systems are often focused on more than one disease within a predefined area. On those occasions when outbreaks of disease are likely to be correlated, the use of multivariate surveillance techniques integrating information from multiple diseases allows us to improve the sensitivity and timeliness of outbreak detection. In this article, we present an extension of the surveillance conditional predictive ordinate to monitor multivariate spatial disease data. The proposed surveillance technique, which is defined for each small area and time period as the conditional predictive distribution of those counts of disease higher than expected given the data observed up to the previous t…
Multivariate nonparametric tests of independence
2005
New test statistics are proposed for testing whether two random vectors are independent. Gieser and Randles, as well as Taskinen, Kankainen, and Oja have introduced and discussed multivariate extensions of the quadrant test of Blomqvist. This article serves as a sequel to this work and presents new multivariate extensions of Kendall's tau and Spearman's rho statistics. Two different approaches are discussed. First, interdirection proportions are used to estimate the cosines of angles between centered observation vectors and between differences of observation vectors. Second, covariances between affine-equivariant multivariate signs and ranks are used. The test statistics arising from these …
Using Interactive Graphics to Teach Multivariate Data Analysis to Psychology Students
2011
This paper discusses the use of interactive graphics to teach multivariate data analysis to Psychology students. Three techniques are explored through separate activities: parallel coordinates/boxp...
On easily interpretable multivariate reference regions of rectangular shape
2011
Till now, multivariate reference regions have played only a marginal role in the practice of clinical chemistry and laboratory medicine. The major reason for this fact is that such regions are traditionally determined by means of concentration ellipsoids of multidimensional Gaussian distributions yielding reference limits which do not allow statements about possible outlyingness of measurements taken in specific diagnostic tests from a given patient or subject. As a promising way around this difficulty we propose to construct multivariate reference regions as p-dimensional rectangles or (in the one-sided case) rectangular half-spaces whose edges determine univariate percentile ranges of the…
Affine Invariant Multivariate Sign and Rank Tests and Corresponding Estimates: a Review
1999
The paper reviews recent contributions to the statistical inference methods, tests and estimates, based on the generalized median of Oja. Multivariate analogues of sign and rank concepts, affine invariant one-sample and two-sample sign tests and rank tests, affine equivariant median and Hodges–Lehmann-type estimates are reviewed and discussed. Some comparisons are made to other generalizations. The theory is illustrated by two examples.