Search results for "name"

showing 10 items of 8538 documents

Scalable implementation of measuring distances in a Riemannian manifold based on the Fisher Information metric

2019

This paper focuses on the scalability of the Fisher Information manifold by applying techniques of distributed computing. The main objective is to investigate methodologies to improve two bottlenecks associated with the measurement of distances in a Riemannian manifold formed by the Fisher Information metric. The first bottleneck is the quadratic increase in the number of pairwise distances. The second is the computation of global distances, approximated through a fully connected network of the observed pairwise distances, where the challenge is the computation of the all sources shortest path (ASSP). The scalable implementation for the pairwise distances is performed in Spark. The scalable…

0209 industrial biotechnologyComputer science02 engineering and technologyRiemannian manifoldBottleneckManifoldsymbols.namesake020901 industrial engineering & automationShortest path problemSpark (mathematics)Scalability0202 electrical engineering electronic engineering information engineeringsymbols020201 artificial intelligence & image processingFisher informationAlgorithmDijkstra's algorithmFisher information metric2019 International Joint Conference on Neural Networks (IJCNN)
researchProduct

Cross-correlation of whitened vibration signals for low-speed bearing diagnostics

2019

Abstract Rolling-element bearings are crucial components in all rotating machinery, and their failure will initially degrade the machine performance, and later cause complete shutdown. The period between an initial crack and complete failure is short due to crack propagation. Therefore, early fault detection is important to avoid unexpected machine shutdown and to aid in maintenance scheduling. Bearing condition monitoring has been applied for several decades to detect incipient faults at an early stage. However, low-speed conditions pose a challenge for bearing fault diagnosis due to low fault impact energy. To reliably detect bearing faults at an early stage, a new method termed Whitened …

0209 industrial biotechnologyComputer scienceAerospace Engineering02 engineering and technology01 natural sciencesFault detection and isolationScheduling (computing)law.inventionsymbols.namesake020901 industrial engineering & automationlawControl theory0103 physical sciences010301 acousticsCivil and Structural EngineeringBearing (mechanical)Cross-correlationMechanical EngineeringCondition monitoringRotational speedComputer Science ApplicationsVibrationControl and Systems EngineeringSignal ProcessingsymbolsHilbert transformMechanical Systems and Signal Processing
researchProduct

A non-stationary relay-based 3D MIMO channel model with time-variant path gains for human activity recognition in indoor environments

2021

AbstractExtensive research showed that the physiological response of human tissue to exposure to low-frequency electromagnetic fields is the induction of an electric current in the body segments. As a result, each segment of the human body behaves as a relay, which retransmits the radio-frequency (RF) signal. To investigate the impact of this phenomenon on the Doppler characteristics of the received RF signal, we introduce a new three-dimensional (3D) non-stationary channel model to describe the propagation phenomenon taking place in an indoor environment. Here, the indoor space is equipped with a multiple-input multiple-output (MIMO) system. A single person is moving in the indoor space an…

0209 industrial biotechnologyComputer scienceMIMO020206 networking & telecommunications02 engineering and technologySignalVDP::Matematikk og Naturvitenskap: 400::Informasjons- og kommunikasjonsvitenskap: 420Power (physics)law.inventionsymbols.namesake020901 industrial engineering & automationRelaylawPath (graph theory)0202 electrical engineering electronic engineering information engineeringsymbolsElectronic engineeringSpectrogramRadio frequencyElectrical and Electronic EngineeringDoppler effect
researchProduct

Density Flow in Dynamical Networks via Mean-Field Games

2016

Current distributed routing control algorithms for dynamic networks model networks using the time evolution of density at network edges, while the routing control algorithm ensures edge density to converge to a Wardrop equilibrium, which was characterized by an equal traffic density on all used paths. We rearrange the density model to recast the problem within the framework of mean-field games. In doing that, we illustrate an extended state-space solution approach and we study the stochastic case where the density evolution is driven by a Brownian motion. Further, we investigate the case where the density evolution is perturbed by a bounded adversarial disturbance. For both the stochastic a…

0209 industrial biotechnologyDensity flowMathematical optimizationMarkov process02 engineering and technology01 natural sciencessymbols.namesake020901 industrial engineering & automationSettore ING-INF/04 - AutomaticaRobustness (computer science)Applied mathematics0101 mathematicsElectrical and Electronic EngineeringBrownian motionMathematics010102 general mathematicsControl engineering decentralized control intelligent transportation systems traffic controlTime evolutionComputer Science ApplicationsMean field theoryControl and Systems EngineeringBounded functionRepeated gamesymbolsSettore MAT/09 - Ricerca OperativaIEEE Transactions on Automatic Control
researchProduct

Parametric Hull Design with Rational Bézier Curves

2021

AbstractIn this paper, a tool able to support the sailing yacht designer during the early stage of the design process has been developed. Quadratic and cubic Rational Bézier curves have been selected to describe the main curves defining the hull of a sailing yacht. The adopted approach is based upon the definition of a set of parameters, say the length of water line, the beam of the waterline, canoe body draft and some dimensionless coefficients according to the traditional way of the yacht designer. Some geometrical constraints imposed on the curves (e.g. continuity, endpoint angles) have been conceived aimed to avoid unreasonable shapes. These curves can be imported in any commercial CAD …

0209 industrial biotechnologyEngineering drawingVisual BasicComputer science020101 civil engineeringBézier curve02 engineering and technologycomputer.software_genre0201 civil engineeringWaterlinesymbols.namesake020901 industrial engineering & automationQuadratic equationHullLine (geometry)symbolsComputer Aided Designcomputercomputer.programming_languageParametric statistics
researchProduct

A unified observer for robust sensorless control of DC–DC converters

2017

Abstract Due to the large variety of converters' configurations, many different sensorless controllers are available in the literature, each one suited for a particular converter. The need for different configurations, especially on the same power supply, make it clear the advantage of having a shared control algorithm. This paper presents a unified nonlinear robust current observer for buck, boost and buck–boost converters in synchronous and asynchronous configurations. The unified observer speeds up the design, tuning and the implementation, and requires a memory cheaper code, easier to certify. Simulation and experimental results are presented to validate the approach in different scenar…

0209 industrial biotechnologyEngineeringObserver (quantum physics)Control (management)Robust control02 engineering and technologySettore ING-IND/32 - Convertitori Macchine E Azionamenti ElettriciAsynchronous converters020901 industrial engineering & automationControl theory0202 electrical engineering electronic engineering information engineeringCode (cryptography)Electrical and Electronic Engineeringbusiness.industryApplied Mathematics020208 electrical & electronic engineeringSynchronous convertersControl engineeringConvertersSensorless controlComputer Science ApplicationsPower (physics)Current mode controlNonlinear systemNonlinear observerControl and Systems EngineeringAsynchronous communicationRobust controlbusinessDC–DC converters
researchProduct

A port-Hamiltonian Fluid-Structure Interaction Model for the Vocal folds ⁎ ⁎This work was supported by CONICYT-PFCHA/2017-21170472, and AC3E CONICYT-…

2018

Abstract Fluid-structure interaction models are of special interest for studying the energy transfer between the moving fluid and the mechanical structure in contact. The vocal folds are an example of a fluid-structure system, where the mechanical structure is usually modeled as a mass-spring-damper system. In particular, the estimation of the collision forces of the vocal folds is of high interest in the diagnosis of phonotraumatic voice pathologies. In this context, the port-Hamiltonian modeling framework focuses on the energy flux in the model and the interacting forces. In this paper, we develop a port-Hamiltonian fluid-structure interaction model based on the interconnection methodolog…

0209 industrial biotechnologyInterconnectionComputer scienceEnergy transferEnergy fluxInteraction model02 engineering and technologyCollision01 natural sciencessymbols.namesake020901 industrial engineering & automationmedicine.anatomical_structureClassical mechanicsControl and Systems EngineeringVocal folds0103 physical sciencesFluid–structure interactionsymbolsmedicineHamiltonian (quantum mechanics)010301 acousticsIFAC-PapersOnLine
researchProduct

Adaptation, coordination, and local interactions via distributed approachability

2017

This paper investigates the relation between cooperation, competition, and local interactions in large distributed multi-agent\ud systems. The main contribution is the game-theoretic problem formulation and solution approach based on the new framework\ud of distributed approachability, and the study of the convergence properties of the resulting game model. Approachability\ud theory is the theory of two-player repeated games with vector payoffs, and distributed approachability is here presented for\ud the first time as an extension to the case where we have a team of agents cooperating against a team of adversaries under local\ud information and interaction structure. The game model turns i…

0209 industrial biotechnologyMarkov process02 engineering and technologyApproachability01 natural sciencesTerm (time)Repeated gamesApproachabilityDifferential gamesRobust controlNetwork flow010104 statistics & probabilityNonlinear systemsymbols.namesake020901 industrial engineering & automationSettore ING-INF/04 - AutomaticaDifferential inclusionControl and Systems EngineeringConvergence (routing)symbolsRepeated gameTopological graph theorySettore MAT/09 - Ricerca Operativa0101 mathematicsElectrical and Electronic EngineeringMathematical economicsMathematicsAutomatica
researchProduct

Single block 3D numerical model for linear friction welding of titanium alloy

2018

A two-stage approach for the simulation of Linear Friction Welding is presented. The proposed model, developed using the commercial simulation package DEFORM, is 3D Lagrangian, thermo-mechanically coupled. The first phase of the process was modelled with two distinct workpieces, while the remaining phases were simulated using a single-block model. The Piwnik–Plata criterion was set up and used to determine the shifting from the dual object to the single-block model. The model, validated against experimental temperature measurements, is able to predict the main field variables distributions with varying process parameters. Titanium alpha and beta phases evolution during the whole process has…

0209 industrial biotechnologyMaterials scienceFinite element method titanium linear friction welding Ti6Al4VTitanium alloychemistry.chemical_element02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter PhysicsFinite element methodsymbols.namesake020901 industrial engineering & automationchemistryBlock (telecommunications)symbolsGeneral Materials ScienceFriction weldingComposite material0210 nano-technologySettore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneLagrangianTitanium
researchProduct

A new approach to simulate coating thickness in cold spray

2020

Abstract In the process of cold spray on complex components, the coating thickness is an important indicator to monitor and control. Current methods such as destructive tests or direct mechanical measurements can only be performed after spraying. Besides, these methods lead to production shutdown and additional costs . This article presents a novel approach predicting coating thickness for components with complex curved surfaces, especially in the case of shadow effects. Firstly, a three-dimensional geometric model of the coating profile based on Gaussian distribution was developed. In addition, the relative deposition efficiency (RDE) resulting from the different robot kinematic parameters…

0209 industrial biotechnologyMaterials scienceGaussianGas dynamic cold sprayProcess (computing)Mechanical engineering02 engineering and technologySurfaces and InterfacesGeneral ChemistryKinematicsengineering.materialFeedback loop021001 nanoscience & nanotechnologyCondensed Matter PhysicsSurfaces Coatings and Films[SPI]Engineering Sciences [physics]symbols.namesake020901 industrial engineering & automationCoatingMaterials ChemistryengineeringsymbolsDeposition (phase transition)0210 nano-technologyGeometric modelingSurface and Coatings Technology
researchProduct