Search results for "nanodevices"

showing 8 items of 8 documents

How self-assembly of amphiphilic molecules can generate complexity in the nanoscale

2015

Abstract Given the importance of nanomaterials and nanostructures in modern technology, in the past decades much effort has been directed to set up efficient bottom up protocols for the piloted self-assembly of molecules. However, molecules are generally disinclined to adopt the desired structural organization because they behave according to their own specific intermolecular interactions. Thus, only some selected classes of chemical compounds are capable to lead to useful self-assembled structures. Amphiphiles, simultaneously possessing polar and apolar moieties within their molecular architecture, can give a wide scenario of possible intermolecular interactions: polar–polar, polar–apolar,…

Amphiphilic moleculeNanostructureStructural organizationChemistryNanomachinesNanotechnologyTop-down and bottom-up designLiving cellComplexitySelf-assemblyNanodevicesNanomachinesSelf-assemblyComplexityNanotechnologyColloid and Surface ChemistryNanotechnologySelf-assemblyNanodevices
researchProduct

Cold-Atom-Induced Control of an Optomechanical Device

2010

We consider a cavity with a vibrating end mirror and coupled to a Bose-Einstein condensate. The cavity field mediates the interplay between mirror and collective oscillations of the atomic density. We study the implications of this dynamics and the possibility of an indirect diagnostic. Our predictions can be observed in a realistic setup that is central to the current quest for mesoscopic quantumness.

Field (physics)General Physics and AstronomyFOS: Physical sciencesQuantum entanglementPhysics and Astronomy(all)01 natural sciences010305 fluids & plasmaslaw.invention/dk/atira/pure/subjectarea/asjc/3100lawUltracold atomQuantum mechanics0103 physical sciencesCold Atoms nanodevices entanglement open systemsQuantum information010306 general physicsPhysicsCondensed Matter::Quantum GasesMesoscopic physicsQuantum PhysicsCavity quantum electrodynamicsNonlinear opticsQuantum Gases (cond-mat.quant-gas)Physics::Accelerator PhysicsAtomic physicsCondensed Matter - Quantum GasesQuantum Physics (quant-ph)Bose–Einstein condensate
researchProduct

Not always what closes best opens better: mesoporous nanoparticles capped with organic gates

2019

ABSTRACT Four types of calcined MCM-41 silica nanoparticles, loaded with dyes and capped with different gating ensembles are prepared and characterized. N1 and N2 nanoparticles are loaded with rhodamine 6G and capped with bulky poly(ethylene glycol) derivatives bearing ester groups (1 and 2). N3-N4 nanoparticles are loaded with sulforhodamine B and capped with self-immolative derivatives bearing ester moieties. In the absence of esterase enzyme negligible cargo release from N1, N3 and N4 nanoparticles is observed whereas a remarkable release for N2 is obtained most likely due to the formation of an irregular coating on the outer surface of the nanoparticles. In contrast, a marked delivery i…

Materials science102 Porous / Nanoporous / Nanostructured materialslcsh:BiotechnologyNanoparticle02 engineering and technologyGating010402 general chemistryEngineering and Structural Materials01 natural scienceslaw.inventionSilica nanoparticlesRhodamine 6Gchemistry.chemical_compoundlaw10 Engineering and Structural materialslcsh:TP248.13-248.65lcsh:TA401-492General Materials ScienceCalcinationgated nanodevices021001 nanoscience & nanotechnologyesterase controlled release0104 chemical sciencesChemical engineeringchemistrylcsh:Materials of engineering and construction. Mechanics of materials0210 nano-technologyMesoporous materialmesoporous nanoparticles
researchProduct

Radiation engineering of functional biomaterials: from smart hydrogels to theragnostic nanodevices

2009

Radiation processing functional biomaterials smart hydrogels theragnostic nanodevices
researchProduct

NEW GENERATION OF BIOCOMPATIBLE GRAFT COPOLYMERS FOR THE PRODUCTION OF NANODEVICES

2009

Settore CHIM/09 - Farmaceutico Tecnologico Applicativobiocompatible copolymers nanodevices
researchProduct

Rapid and eco-friendly synthesis of graphene oxide-silica nanohybrids

2014

The increasing interest in Graphene oxide (GO) is due to many issues: the presence of both sp2-conjugated atoms and oxygen-containing functional groups provides a strong hydrophilicity and the possibility to further functionalize it with other molecules (i.e. π-π interactions covalent attachment etc.) [1]. Furthermore since the GO is biocompatible and noncytotoxic many studies have been recently focused on the development of GO-based nanodevices for bioimaging DNA detection drug delivery. Due to their low cytotoxicity and large internal surface area silica nanoparticles have been taken into account as promising material for biolabeling and drug loading/delivery. Particular consideration has recently been demonstrated for GO-silica composites because of the potentialities for electrical applications their chemical inertia and stability toward ions exposure. The possibility to combine the extraordinary properties of GO and silica offers several advantages for the realization of nanoprobes for biological applications and of biosensor [12]. The strategy for the fabrication of GO-nanosilica nanohybrids can be schematized as follows: (i) synthesis of GO by oxidizing graphite powder with the method described by Marcano et al. [3] (ii) Preparation of oxygen-loaded silica nanoparticles by thermal treatments in controlled atmosphere in order to induce high NIR emission at 1272 nm from high purity silica nanoparticles. (iii) preparation of GrO-silica nanohybrid films via rapid solvent casting in water. The nanohybrids were tested by XPS FTIR Raman analysis UV photoluminescence analysis TGA Zeta potential measurements electrical tests AFM and SEM. Several nanohybrids were prepared by combining two different typologies of GO and two different samples of silica.
researchProduct

Thermodynamics and Biophysics of Biomedical Nanosystems Applications and Practical Considerations

2019

This book highlights the recent advances of thermodynamics and biophysics in drug delivery nanosystems and in biomedical nanodevices. The up-to-date book provides an in-depth knowledge of bio-inspired nanotechnological systems for pharmaceutical applications. Biophysics and thermodynamics, supported by mathematics, are the locomotive by which the drug transportation and the targeting processes will be achieved under the light of the modern pharmacotherapy. They are considered as scientific tools that promote the understanding of physicochemical and thermotropic functionality and behavior of artificial cell membranes and structures like nanoparticulate systems. Therefore, this book focusses …

drug delivery nanosystemsnanothermodynamicsbiomedical nanodeviceslipid thermodynamicslipid membranesnano thermotropic behaviorliposomal formulananoparticle stability
researchProduct

PHARMACEUTICAL NANODEVICES FOR BIOMEDICAL APPLICATIONS

2013

nanodevices
researchProduct