Search results for "nanostructuration"

showing 2 items of 2 documents

Direct experimental observation of mesoscopic fluorous domains in fluorinated room temperature ionic liquids

2017

Fluorinated room temperature ionic liquids (FRTILs) represent a class of solvent media that are attracting great attention due to their IL-specific properties as well as features stemming from their fluorous nature. Medium-to-long fluorous tails constitute a well-defined apolar moiety in the otherwise polar environment. Similarly to the case of alkyl tails, such chains are expected to result in the formation of self-assembled fluorous domains. So far, however, no direct experimental observation has been made of the existence of such structural heterogeneities on the nm scale. We report here the first experimental evidence of the existence of mesoscopic spatial segregation of fluorinated dom…

General Physics and AstronomyNanotechnology02 engineering and technologyNeutron scattering010402 general chemistryLAYER CAPACITOR APPLICATIONS; PERFLUOROALKYL SIDE-CHAINS; ANGLE NEUTRON-SCATTERING; PARTICLE MESH EWALD; PHYSICOCHEMICAL PROPERTIES; FORCE-FIELD; CATION SYMMETRY; STRUCTURAL-CHARACTERIZATION; AMMONIUM TETRAFLUOROBORATE; MOLECULAR SIMULATION01 natural sciencesionic liquidsionic liquids SANS nanostructuration fluorous domains NMR NOEchemistry.chemical_compoundMolecular dynamicsPhysics and Astronomy (all)nanostructurationMoietyPhysical and Theoretical ChemistryAlkylNOEchemistry.chemical_classificationfluorous domainsMesoscopic physicsSANSNuclear magnetic resonance spectroscopy021001 nanoscience & nanotechnologyNMR0104 chemical sciencesfluorinated ionic liquids neutron scattering x-ray diffraction structurechemistryChemical physicsIonic liquidPolar0210 nano-technology
researchProduct

Technological innovation around protein and cell biochip for diagnosis: a translational research from nanoworld to patient

2009

International audience; A great challenge in biosensors and diagnosis devices relies on the way to reconstitute relevant biological mechanisms on surface of the biochips and which analytical tools are convenient to provide accurate and rapid information on the structures and function of molecules attached to this surface. A better control in the realization of biochips can be obtained in combining different complementary approaches while always keeping in mind the biological key point. Researches in CLIPP are focused towards this objective. Conception, realization and characterization of protein and cell chips are presented. We detail different strategies of materials engineering1,2,3, chem…

[SDV.BBM.BP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biophysics[ SDV.BBM.BP ] Life Sciences [q-bio]/Biochemistry Molecular Biology/Biophysicsatomic force microscopynanostructurationdiagnosisbiochip[SDV.BBM.BP] Life Sciences [q-bio]/Biochemistry Molecular Biology/Biophysicssurface functionalizationmass spectrometry
researchProduct