Search results for "nanostructuring"

showing 10 items of 11 documents

An experimental investigation on the poor hydrogen sorption properties of nano-structured LaNi5 prepared by ball-milling

2011

Abstract Nano-structured LaNi5 hydrogen storage materials prepared by ball-milling is analysed using differential scanning calorimetry (DSC) and x-ray photoelectron spectroscopy (XPS). DSC results indicate a partial elimination of defects at 500 °C in a more efficient way for the short-time ball-milled powders compared to the long-time ball-milled ones. XPS results show almost no change in the core-level electronic structure for La and Ni of LaNi5 in the bulk and the nano-structured forms, but gives an indication that the self-restoring mechanism of the active surface observed in the bulk sample (Siegmann et al. Phys. Rev. Lett. 40, 972) may not be occurring in the nano-powders. Results fro…

DiffractionAtomic disorderMaterials scienceRenewable Energy Sustainability and the EnvironmentSettore FIS/01 - Fisica SperimentaleAnalytical chemistryEnergy Engineering and Power TechnologyElectronic structureActive surfaceCondensed Matter PhysicsHydrogen storageFuel TechnologyDifferential scanning calorimetryX-ray photoelectron spectroscopyHydrogen storage materials; Nanostructuring; Atomic disorderNano-Hydrogen storage materialNanostructuringBall millInternational Journal of Hydrogen Energy
researchProduct

Local structure of ball-milled LaNi5 hydrogen storage material by Ni K-edge EXAFS

2010

Abstract Local structure of the nanostructured LaNi5 hydrogen storage alloys, prepared by ball-milling, has been studied using Ni K-edge extended X-ray absorption fine structure spectroscopy. Results indicate that the ball-milling up to 100 h results in the production of nanoparticles characterized by large atomic disorder and slightly reduced unit-cell volume, compared to the bulk LaNi5. High temperature annealing appears to help in partial recovery of atomic order in the ball-milled samples; however, long-time ball-milled samples retain large disorder even after the high temperature annealing. The results suggest that the large disorder and the reduced unit-cell volume might be causing a …

Materials scienceAbsorption spectroscopyExtended X-ray absorption fine structureAnnealing (metallurgy)Analytical chemistryIntermetallicHydrogen storage materials Nanostructuring Local structure Atomic disorderCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsInorganic ChemistryHydrogen storageCrystallographyX-ray crystallographyMaterials ChemistryCeramics and CompositesPhysical and Theoretical ChemistrySpectroscopyBall mill
researchProduct

Large atomic disorder in nanostructured LaNi5 alloys: A la L3-edge extended X-ray absorption fine structure study

2010

Abstract Local structure of the nanostructured LaNi 5 alloys, prepared by ball-milling, has been studied using La L 3 -edge extended X-ray absorption fine structure spectroscopy. The near-neighbor distances tend to decrease with the ball-milling, and the mean square relative displacements (MSRD) show substantial increase suggesting an increased atomic disorder. High temperature annealing helps in partial recovery of atomic order in the ball-milled samples for milling times upto 20 h, however, the long-time ball-milled samples seems to gain only a local random order. The results suggest that reduced unit-cell volume together with large atomic-disorder might be causing a higher energy-barrier…

Mean squareMaterials scienceAtomic orderAnnealing (metallurgy)Analytical chemistry02 engineering and technology01 natural sciencesLocal structureRandom order0103 physical sciencesGeneral Materials ScienceNanostructuringSpectroscopy010302 applied physicsExtended X-ray absorption fine structured. crystal structureCrystal structurec. exafsGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter Physicsd. crystal structure; a. nanostructuring; c. exafs; a. lani5 alloysEXAFSLaNi5 alloya. lani5 alloys0210 nano-technologya. nanostructuring
researchProduct

Nanostructuring thin Au films on transparent conductive oxide substrates

2013

Fabrication processes of Au nanostructures on indium-tin-oxide (ITO) surface by simple, versatile, and low-cost bottom-up methodologies are investigated in this work. A first methodology exploits the patterning effects induced by nanosecond laser irradiations on thin Au films deposited on ITO surface. We show that after the laser irradiations, the Au film break-up into nanoclusters whose mean size and surface density are tunable by the laser fluence. A second methodology exploits, instead, the patterning effects of standard furnace thermal processes on the Au film deposited on the ITO. We observe, in this case, a peculiar shape evolution from pre-formed nanoclusters during the Au deposition…

NanoclusterLaser annealingMaterials scienceNanostructureFabricationNanoringPatterning effectGold depositAnnealing (metallurgy)NanotechnologyFluenceSettore ING-INF/01 - Elettronicalaw.inventionNanoclusterslawThermalDeposition stageAuGeneral Materials ScienceNanostructuringTransparent conducting filmDepositMechanical EngineeringNanoringsTransparent conductive oxides Conductive filmAnnealing temperatureCondensed Matter PhysicsLaserAu; ITO; NanostructuringFurnace annealingNanostructuresNanostructured materialFabrication proceMechanics of MaterialsOxide films GoldITO
researchProduct

Formation and Evolution of Nanoscale Metal Structures on ITO Surface by Nanosecond Laser Irradiations of Thin Au and Ag Films

2012

The effect of nanosecond laser irradiations on 5 nm thick sputter-deposited Au and Ag films on Indium-Tin-Oxide surface is investigated by atomic force microscopy (AFM) and scanning electron microscopy (SEM). After 500, 750, and 1000 mJ/cm 2 fluence irradiations, the breakup of the Au and Ag films into nanoscale islands is observed as a consequence of fast melting and solidification processes. The mean nanoparticles size and surface density are quantified, as a function of the laser fluence, by the AFM and SEM analyses. In particular, the comparison between the Au and Ag islands reveals the formation of larger islands in the case of Ag for each fixed fluence. The mechanism of the nanoscale …

NanoclusterMaterials scienceNanosecond laser irradiationScanning electron microscopeITO; Laser; Au; AgLaserNanoparticleNanotechnologyAgSettore ING-INF/01 - ElettronicaMolecular physicsFluenceSettore FIS/03 - Fisica Della MateriaMetalAtomic force microscopyAuGeneral Materials ScienceDewettingNanostructuringNanoscopic scaleBreakupvisual_artvisual_art.visual_art_mediumGoldNanosecond laserITO
researchProduct

Synthesis and characterization of nanocrystalline LaNi5 hydrogen storage materials

2009

With the growing environmental concerns of greenhouse gas emissions from the burning of fossil fuels, it is becoming increasingly important to switch to cleaner alternative fuels such as hydrogen [1]. Inter-metallic LaNi5 is one of the most widely used and studied solid-state hydrogen storage material – a pet material for the prototype systems using hydrogen fuel. However, nanostructuring effects on this systems are not yet fully explored. Recently we have carried out systematic studies regarding the effect of nanostructuring on the hydrogen sorption properties of this material [2]. Unlike some other potential hydrogen storage materials, which shows faster kinetics upon nanostructuring, the…

Nanostructuring ball milling hydrogen storage LaNi5
researchProduct

Nanostructuring - a possible way to enhance the hydrogen sorption properties of materials

2009

Settore FIS/01 - Fisica Sperimentalehydridesball millinghydogen storagenanostructuring
researchProduct

Effect of nano-structuring on hydrogen sorption properties of LaNi5 systems

2010

hydrogen storage LaNi5 nanostructuring hydrides ball milling
researchProduct

Hydrogen sorption properties of the composite system calcium hydride – magnesium boride

2010

hydrogen storage borohydrides nanostructuring ball milling RHC
researchProduct

Nanostructured Materials and Systems for Hydrogen Technology

2011

hydrogen storage nanostructuring hydrides ball milling borohydrides hydrogen tank nanoconfinement
researchProduct