Search results for "nap"

showing 10 items of 2226 documents

Modulation of information processing by AMPA receptor auxiliary subunits

2020

AMPA-type glutamate receptors (AMPARs) are key molecules of neuronal communication in our brain. The discovery of AMPAR auxiliary subunits, such as proteins of the TARP, CKAMP and CNIH families, fundamentally changed our understanding of how AMPAR function is regulated. Auxiliary subunits control almost all aspects of AMPAR function in the brain. They influence AMPAR assembly, composition, structure, trafficking, subcellular localization and gating. This influence has important implications for synapse function. In the present review, we first discuss how auxiliary subunits affect the strength of synapses by modulating number and localization of AMPARs in synapses as well as their glutamate…

0301 basic medicinePhysiology610 MedizinGlutamic AcidGatingAMPA receptorSynaptic TransmissionSynapse03 medical and health sciences0302 clinical medicineHomeostatic plasticity610 Medical sciencesHumansReceptors AMPAReceptorNeuronsNeuronal PlasticityChemistrymusculoskeletal neural and ocular physiologyGlutamate receptor030104 developmental biologyHebbian theorynervous systemSynapsesSynaptic plasticityNeuroscience030217 neurology & neurosurgery
researchProduct

3D polymeric supports promote the growth and progression of anaplastic thyroid carcinoma.

2020

Abstract Anaplastic thyroid carcinoma (ATC) is a rare and aggressive malignancy that accounts for the majority of deaths from all thyroid cancers. ATC exhibits invasiveness and highly resistance to conventional therapies which include cytotoxic chemotherapy, the combination of BRAF and MEK inhibition and, more recently, immunotherapies, that have shown promising but still limited results. A growing knowledge on ATC tumor biology is needed for developing more effective therapies with significant better survival. Researchers have begun to utilize 3D models to culture cancer cells for in vitro studies. In this work, C643 ATC cell line was cultured on polymeric scaffolds with high-interconnecte…

0301 basic medicinePolymersBiophysicsMalignancyStem cell markerThyroid Carcinoma AnaplasticBiochemistryMetastasis03 medical and health sciences0302 clinical medicineCancer stem cellCell Line TumormedicineBiomarkers TumorHumansDoxorubicin3D tumor model Anaplastic thyroid carcinoma Doxorubicin Polymeric scaffold Stem cell markersMolecular BiologyThyroid cancerCell ShapeCell ProliferationTissue Scaffoldsbusiness.industryThyroidCell Biologymedicine.disease030104 developmental biologymedicine.anatomical_structureDoxorubicin030220 oncology & carcinogenesisCancer cellCancer researchDisease ProgressionNeoplastic Stem Cellsbusinessmedicine.drugBiochemical and biophysical research communications
researchProduct

PTEN recruitment controls synaptic and cognitive function in Alzheimer's models

2016

Dyshomeostasis of amyloid-β peptide (Aβ) is responsible for synaptic malfunctions leading to cognitive deficits ranging from mild impairment to full-blown dementia in Alzheimer's disease. Aβ appears to skew synaptic plasticity events toward depression. We found that inhibition of PTEN, a lipid phosphatase that is essential to long-term depression, rescued normal synaptic function and cognition in cellular and animal models of Alzheimer's disease. Conversely, transgenic mice that overexpressed PTEN displayed synaptic depression that mimicked and occluded Aβ-induced depression. Mechanistically, Aβ triggers a PDZ-dependent recruitment of PTEN into the postsynaptic compartment. Using a PTEN kno…

0301 basic medicinePrimary Cell CulturePDZ DomainsMice TransgenicMolecular neuroscienceBiologyNeurotransmissionSynaptic TransmissionMice03 medical and health sciences0302 clinical medicineAlzheimer DiseasePostsynaptic potentialmedicineAnimalsPTENGene Knock-In TechniquesAmyloid beta-PeptidesGeneral NeurosciencePTEN PhosphohydrolaseLong-term potentiationmedicine.diseaseRatsDisease Models Animal030104 developmental biologySynaptic fatigueSynaptic plasticitybiology.proteinAlzheimer's diseaseCognition DisordersNeuroscience030217 neurology & neurosurgeryNature Neuroscience
researchProduct

Evolutionary insight on localization of 18S, 28S rDNA genes on homologous chromosomes in Primates genomes

2018

Abstract We explored the topology of 18S and 28S rDNA units by fluorescence in situ hybridization (FISH) in the karyotypes of thirteen species representatives from major groups of Primates and Tupaia minor (Günther, 1876) (Scandentia), in order to expand our knowledge of Primate genome reshuffling and to identify the possible dispersion mechanisms of rDNA sequences. We documented that rDNA probe signals were identified on one to six pairs of chromosomes, both acrocentric and metacentric ones. In addition, we examined the potential homology of chromosomes bearing rDNA genes across different species and in a wide phylogenetic perspective, based on the DAPI-inverted pattern and their synteny t…

0301 basic medicinePrimateslcsh:QH426-470Plant ScienceRepetitive DNABiologySettore BIO/08 - AntropologiasynapomorphyGenomeHomology (biology)03 medical and health sciencesmedicineGeneticsAnimaliaChordataRibosomal DNASyntenyPhylogenetic treemedicine.diagnostic_testPrimateFluorescence in situ hybridizationKaryotypeScandentialcsh:Genetics030104 developmental biologyEvolutionary biologyMammaliaAnimal Science and Zoologyrepetitive DNAstree shrewFluorescence in situ hybridizationBiotechnologyResearch ArticleComparative Cytogenetics
researchProduct

Neuroendocrine differentiation in a large series of genetically-confirmed Ewing’s sarcoma family tumor: Does it provide any diagnostic or prognostic …

2021

Given the potential for neuroendocrine differentiation in Ewing's sarcoma family of tumors (ESFT), we aimed to determine neuroendocrine expression in a large series of genetically-confirmed ESFT and its prognostic significance in clinically-localised neoplasms (n = 176). Slides prepared from tissue microarrays were stained for Insulinoma-associated protein 1 (INSM1), CD56, chromogranin-A and synaptophysin. INSM1 expression was present in 59% of ESFT, while synaptophysin, chromogranin-A and CD56 were expressed in only 13%, 8% and 5% of ESFT, respectively. Histological subtypes were only significantly correlated with INSM1 (p = 0.032) or CD56 (p = 0.016) immunoexpression. Regarding prognosis,…

0301 basic medicinePrognostic factorLung NeoplasmsSynaptophysinSarcoma EwingNeuroendocrine differentiationPathology and Forensic Medicine03 medical and health sciences0302 clinical medicineBiomarkers TumormedicineHumansTissue microarraybiologybusiness.industryEwing's sarcomaLarge seriesChromogranin ACell DifferentiationCell Biologymedicine.diseaseCarcinoma NeuroendocrineRepressor Proteins030104 developmental biology030220 oncology & carcinogenesisSynaptophysinbiology.proteinCancer researchSarcomabusinessPathology - Research and Practice
researchProduct

Aβ Induces Excitotoxicity Mediated by APC/C-Cdh1 Depletion That Can Be Prevented by Glutaminase Inhibition Promoting Neuronal Survival

2016

AbstractThe E3 ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C) is activated by the fizzy-related protein homolog/CDC20-like protein 1 (cdh1) in post-mitotic neurons. Growing evidence suggests that dysregulation of APC/C-Cdh1 is involved in neurodegenerative diseases. Here we show in neurons that oligomers of amyloid beta (Aβ), a peptide related to Alzheimer’s disease, cause proteasome-dependent degradation of cdh1. This leads to a subsequent increase in glutaminase (a degradation target of APC/C-Cdh1), which causes an elevation of glutamate levels and further intraneuronal Ca2+ dysregulation, resulting in neuronal apoptosis. Glutaminase inhibition prevents glutamate excitotoxi…

0301 basic medicineProteasome Endopeptidase ComplexCell SurvivalAmyloid betaBlotting WesternExcitotoxicityHippocampusmedicine.disease_causeHippocampusArticleAnaphase-Promoting Complex-CyclosomeCdh1 ProteinsAnimals Genetically ModifiedMice03 medical and health sciences0302 clinical medicineGlutaminasemedicineAnimalsRats WistarNeuronsAmyloid beta-PeptidesMultidisciplinarybiologyGlutaminaseCyclin-dependent kinase 5Glutamate receptorCyclin-Dependent Kinase 5Molecular biologyRatsUbiquitin ligase030104 developmental biologyApoptosisbiology.protein030217 neurology & neurosurgeryScientific Reports
researchProduct

2019

Traumatic brain injury (TBI) can lead to impaired cognition and memory consolidation. The acute phase (24–48 h) after TBI is often characterized by neural dysfunction in the vicinity of the lesion, but also in remote areas like the contralateral hemisphere. Protein homeostasis is crucial for synaptic long-term plasticity including the protein degradation systems, proteasome and autophagy. Still, little is known about the acute effects of TBI on synaptic long-term plasticity and protein degradation. Thus, we investigated TBI in a controlled cortical impact (CCI) model in the motor and somatosensory cortex of mice ex vivo-in vitro. Late long-term potentiation (l-LTP) was induced by theta-burs…

0301 basic medicineProtein degradationNeuroprotectionCatalysisInorganic Chemistry03 medical and health scienceschemistry.chemical_compound0302 clinical medicineCa2+/calmodulin-dependent protein kinaseMG132medicinePhysical and Theoretical ChemistryMolecular BiologySpectroscopybusiness.industryOrganic ChemistryLong-term potentiationGeneral MedicineComputer Science Applications030104 developmental biologychemistrySynaptic plasticityProteasome inhibitorMemory consolidationbusinessNeuroscience030217 neurology & neurosurgerymedicine.drugInternational Journal of Molecular Sciences
researchProduct

Fungicide resistance towards fludioxonil conferred by overexpression of the phosphatase gene Mo PTP 2 in Magnaporthe oryzae

2018

The fungicide fludioxonil causes hyperactivation of the Hog1p MAPK within the high-osmolarity glycerol signaling pathway essential for osmoregulation in pathogenic fungi. The molecular regulation of MoHog1p phosphorylation is not completely understood in pathogenic fungi. Thus, we identified and characterized the putative MoHog1p-interacting phosphatase gene MoPTP2 in the filamentous rice pathogen Magnaporthe oryzae. We found overexpression of MoPTP2 conferred fludioxonil resistance in M. oryzae, whereas the 'loss of function' mutant ΔMoptp2 was more susceptible toward the fungicide. Additionally, quantitative phosphoproteome profiling of MoHog1p phosphorylation revealed lower phosphorylati…

0301 basic medicineProteomeMutantPhosphataseGene ExpressionDioxolesBiologyFludioxonilMicrobiologyMicrobiologyFungal Proteins03 medical and health sciencesDrug Resistance FungalGene expressionPyrrolesPhosphorylationMolecular BiologyGenePlant DiseasesOryzaPhosphoproteinsFungicides IndustrialFungicideMagnaporthe030104 developmental biologyPhosphorylationMitogen-Activated Protein KinasesProtein Tyrosine PhosphatasesSignal transductionProtein Processing Post-TranslationalGene DeletionMolecular Microbiology
researchProduct

Human R1441C LRRK2 regulates the synaptic vesicle proteome and phosphoproteome in a Drosophila model of Parkinson's disease

2016

International audience; Mutations in leucine-rich repeat kinase 2 (LRRK2) cause late-onset, autosomal dominant familial Parkinsons disease (PD) and variation at the LRRK2 locus contributes to the risk for idiopathic PD. LRRK2 can function as a protein kinase and mutations lead to increased kinase activity. To elucidate the pathophysiological mechanism of the R1441C mutation in the GTPase domain of LRRK2, we expressed human wild-type or R1441C LRRK2 in dopaminergic neurons of Drosophila and observe reduced locomotor activity, impaired survival and an age-dependent degeneration of dopaminergic neurons thereby creating a new PD-like model. To explore the function of LRRK2 variants in vivo, we …

0301 basic medicineProteomerab3 GTP-Binding Proteinsalpha-synucleindomainSyntaxin 1Interactomedopaminergic-neuronsAnimals Genetically Modifiedchemistry.chemical_compound0302 clinical medicinemicrotubule stabilityDrosophila ProteinsProtein Interaction MapsGenetics (clinical)LRRK2 GeneKinasephosphorylationBrainParkinson DiseaseArticlesGeneral Medicineautosomal-dominant parkinsonismLRRK2Drosophila melanogasterSynaptotagmin IProteomePhosphorylationSynaptic VesiclesNerve Tissue ProteinsBiologyLeucine-Rich Repeat Serine-Threonine Protein Kinase-203 medical and health sciencesGeneticsAnimalsHumansKinase activitygeneMolecular BiologyAlpha-synucleingtp-bindingDopaminergic Neuronsrepeat kinase 2Molecular biologyPhosphoric Monoester Hydrolasesnervous system diseasesDisease Models Animal030104 developmental biologyGene Expression Regulationchemistrymutation030217 neurology & neurosurgery[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct

TCR signalling network organization at the immunological synapses of murine regulatory T cells.

2017

Regulatory T (Treg) cells require T-cell receptor (TCR) signalling to exert their immunosuppressive activity, but the precise organization of the TCR signalling network compared to conventional T (Tconv) cells remains elusive. By using accurate mass spectrometry and multi-epitope ligand cartography (MELC) we characterized TCR signalling and recruitment of TCR signalling components to the immunological synapse (IS) in Treg cells and Tconv cells. With the exception of Themis which we detected in lower amounts in Treg cells, other major TCR signalling components were found equally abundant, however, their phosphorylation-status notably discriminates Treg cells from Tconv cells. Overall, this s…

0301 basic medicineProteomicsImmunological SynapsesProteomeCD3ImmunologyReceptors Antigen T-Cellchemical and pharmacologic phenomenaBiologyT-Lymphocytes RegulatoryArticleImmunological synapse03 medical and health sciencesT-Lymphocyte SubsetsImmunology and AllergyAnimalsPhosphorylationReceptorCells CulturedCD86Mice Inbred BALB CZAP-70 Protein-Tyrosine KinaseZAP70T-cell receptorCD28hemic and immune systemsImmunological SynapsesCell biology030104 developmental biologyMicroscopy Fluorescencebiology.proteinFemaleSignal TransductionEuropean journal of immunology
researchProduct