Search results for "nervous system"

showing 10 items of 3271 documents

Local field potential activity dynamics in response to deep brain stimulation of the subthalamic nucleus in Parkinson's disease

2020

Abstract Local field potentials (LFPs) may afford insight into the mechanisms of action of deep brain stimulation (DBS) and potential feedback signals for adaptive DBS. In Parkinson's disease (PD) DBS of the subthalamic nucleus (STN) suppresses spontaneous activity in the beta band and drives evoked resonant neural activity (ERNA). Here, we investigate how STN LFP activities change over time following the onset and offset of DBS. To this end we recorded LFPs from the STN in 14 PD patients during long (mean: 181.2 s) and short (14.2 s) blocks of continuous stimulation at 130 Hz. LFP activities were evaluated in the temporal and spectral domains. During long stimulation blocks, the frequency …

0301 basic medicineChange over timeMaleDeep brain stimulationSteady state (electronics)Parkinson's diseasemedicine.medical_treatmentDeep Brain StimulationParkinson's disease610 Medicine & healthStimulationFeedback markersLocal field potentialHigh frequency oscillationsArticlelcsh:RC321-57103 medical and health sciences0302 clinical medicineSubthalamic NucleusmedicineHumansBeta (finance)Adaptive deep brain stimulation610 Medicine & healthEvoked PotentialsBeta oscillationslcsh:Neurosciences. Biological psychiatry. NeuropsychiatryAgedLocal field potentialsChemistryParkinson DiseaseMiddle Agedmedicine.diseasenervous system diseasesSubthalamic nucleus030104 developmental biologysurgical procedures operativeNeurologynervous systemParkinson’s diseaseFemaleEvoked resonant neural activityGamma activityBeta RhythmNeuroscience030217 neurology & neurosurgery
researchProduct

2018

Giant depolarizing potentials (GDPs) represent a typical spontaneous activity pattern in the immature hippocampus. GDPs are mediated by GABAergic and glutamatergic synaptic inputs and their initiation requires an excitatory GABAergic action, which is typical for immature neurons due to their elevated intracellular Cl- concentration ([Cl-]i). Because GABAA receptors are ligand-gated Cl- channels, activation of these receptors can potentially influence [Cl-]i. However, whether the GABAergic activity during GDPs influences [Cl-]i is unclear. To address this question we performed whole-cell and gramicidin-perforated patch-clamp recordings from visually identified CA3 pyramidal neurons in immatu…

0301 basic medicineChemistryGABAA receptorHippocampusAMPA receptorHippocampal formation03 medical and health sciencesCellular and Molecular Neurosciencechemistry.chemical_compound030104 developmental biology0302 clinical medicinenervous systemGiant depolarizing potentialsExcitatory postsynaptic potentialCNQXBiophysicsGABAergic030217 neurology & neurosurgeryFrontiers in Cellular Neuroscience
researchProduct

Myelin: Methods for Purification and Proteome Analysis

2019

Molecular characterization of myelin is a prerequisite for understanding the normal structure of the axon/myelin-unit in the healthy nervous system and abnormalities in myelin-related disorders. However, reliable molecular profiles necessitate very pure myelin membranes, in particular when considering the power of highly sensitive "omics"-data acquisition methods. Here, we recapitulate the history and recent applications of myelin purification. We then provide our laboratory protocols for the biochemical isolation of a highly pure myelin-enriched fraction from mouse brains and for its proteomic analysis. We also supply methodological modifications when investigating posttranslational modifi…

0301 basic medicineChemistryLipidomeProteomicsOligodendrocyteCell biologyWhite matter03 medical and health sciencesMyelin030104 developmental biology0302 clinical medicinemedicine.anatomical_structurenervous systemProteomemedicineDensity gradient ultracentrifugationAxon030217 neurology & neurosurgery
researchProduct

Chronic benzodiazepine treatment decreases spine density in cortical pyramidal neurons.

2015

The adult brain retains a substantial capacity for synaptic reorganization, which includes a wide range of modifications from molecular to structural plasticity. Previous reports have demonstrated that the structural remodeling of excitatory neurons seems to occur in parallel to changes in GABAergic neurotransmission. The function of neuronal inhibitory networks can be modified through GABAA receptors, which have a binding site for benzodiazepines (BZ). Although BZs are among the most prescribed drugs, is not known whether they modify the structure and connectivity of pyramidal neurons. In the present study we wish to elucidate the impact of a chronic treatment of 21 days with diazepam (2mg…

0301 basic medicineCingulate cortexMaleDendritic spineDendritic SpinesPrefrontal CortexMice TransgenicBiologyInhibitory postsynaptic potential03 medical and health sciences0302 clinical medicinePostsynaptic potentialAnimalsGABA-A Receptor AgonistsDiazepamBehavior AnimalDose-Response Relationship DrugGABAA receptorGeneral NeurosciencePyramidal Cellsfood and beveragesLong-term potentiation030104 developmental biologynervous systemExcitatory postsynaptic potentialGABAergicNeuroscience030217 neurology & neurosurgeryNeuroscience letters
researchProduct

2020

Objective: We investigated cerebral opioid receptor binding potential in patients with fibromyalgia syndrome (FMS) using positron-emission-tomography (PET) and correlated our results with patients' systemic interleukin-4 (IL-4) gene expression. Methods: In this pilot study, seven FMS patients (1 man, 6 women) agreed to participate in experimental PET scans. All patients underwent neurological examination, were investigated with questionnaires for pain, depression, and FMS symptoms. Additionally, blood for IL-4 gene expression analysis was withdrawn at two time points with a median latency of 1.3 years. Patients were investigated in a PET scanner using the opioid receptor ligand F-18-fluoro-…

0301 basic medicineCingulate cortexmedicine.medical_specialtymedicine.diagnostic_testbusiness.industrymedicine.drug_classGeneral NeuroscienceCentral nervous systemNeurological examination03 medical and health sciences030104 developmental biology0302 clinical medicineEndocrinologymedicine.anatomical_structureOpioidOpioid receptorOpioid Receptor BindingInternal medicinemedicineReceptorbusiness030217 neurology & neurosurgeryDepression (differential diagnoses)medicine.drugFrontiers in Neuroscience
researchProduct

Artemisinin-treatment in pre-symptomatic APP-PS1 mice increases gephyrin phosphorylation at Ser270: a modification regulating postsynaptic GABAAR den…

2021

Abstract Artemisinins, a group of plant-derived sesquiterpene lactones, are efficient antimalarial agents. They also share anti-inflammatory and anti-viral activities and were considered for treatment of neurodegenerative disorders like Alzheimer’s disease (AD). Additionally, artemisinins bind to gephyrin, the multifunctional scaffold of GABAergic synapses, and modulate inhibitory neurotransmission in vitro. We previously reported an increased expression of gephyrin and GABAA receptors in early pre-symptomatic stages of an AD mouse model (APP-PS1) and in parallel enhanced CDK5-dependent phosphorylation of gephyrin at S270. Here, we studied the effects of artemisinin on gephyrin in the brain…

0301 basic medicineClinical BiochemistryNeurotransmissionInhibitory postsynaptic potentialHippocampusBiochemistryMice03 medical and health sciences0302 clinical medicinePostsynaptic potentialAnimalsPhosphorylationMolecular BiologyCells Culturedgamma-Aminobutyric AcidGephyrinbiologyGABAA receptorChemistryCyclin-dependent kinase 5Membrane ProteinsReceptors GABA-AArtemisininsCell biology030104 developmental biologynervous systemSynapsesbiology.proteinPhosphorylationGABAergicCarrier Proteins030217 neurology & neurosurgeryBiological Chemistry
researchProduct

The NG2 Protein Is Not Required for Glutamatergic Neuron-NG2 Cell Synaptic Signaling.

2014

NG2 glial cells (as from now NG2 cells) are unique in receiving synaptic input from neurons. However, the components regulating formation and maintenance of these neuron–glia synapses remain elusive. The transmembrane protein NG2 has been considered a potential mediator of synapse formation and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) clustering, because it contains 2 extracellular Laminin G/Neurexin/Sex Hormone-Binding Globulin domains, which in neurons are crucial for formation of transsynaptic neuroligin– neurexin complexes. NG2 is connected via Glutamate Receptor-Interacting Protein with GluA2/3-containing AMPARs, thereby possibly mediating receptor clus…

0301 basic medicineCognitive NeuroscienceNeurexinSynaptogenesisGlutamic AcidNeuroliginMice TransgenicBiologyNeurotransmissionHippocampusSynaptic Transmission03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicinePostsynaptic potentialAnimalsReceptors AMPAAntigensNeuronsMembrane Proteins030104 developmental biologynervous systemSynaptic plasticitySynapsesProteoglycansSynaptic signalingNeurosciencePostsynaptic densityNeuroglia030217 neurology & neurosurgeryCerebral cortex (New York, N.Y. : 1991)
researchProduct

Synaptic Phospholipid Signaling Modulates Axon Outgrowth via Glutamate-dependent Ca2+-mediated Molecular Pathways.

2015

Abstract Altered synaptic bioactive lipid signaling has been recently shown to augment neuronal excitation in the hippocampus of adult animals by activation of presynaptic LPA2-receptors leading to increased presynaptic glutamate release. Here, we show that this results in higher postsynaptic Ca2+ levels and in premature onset of spontaneous neuronal activity in the developing entorhinal cortex. Interestingly, increased synchronized neuronal activity led to reduced axon growth velocity of entorhinal neurons which project via the perforant path to the hippocampus. This was due to Ca2+-dependent molecular signaling to the axon affecting stabilization of the actin cytoskeleton. The spontaneous…

0301 basic medicineCognitive NeuroscienceNeuronal OutgrowthHippocampusGlutamic AcidAxon hillockSynaptic Transmission03 medical and health sciencesCellular and Molecular NeuroscienceMice0302 clinical medicinePostsynaptic potentialmedicinePremovement neuronal activityAnimalsbioactive phospholipidsCalcium SignalingAxonearly synchronized activityCells CulturedPhospholipidsChemistryOriginal ArticlesEntorhinal cortexPerforant pathActin cytoskeletonAxonsCell biologyCa2+-signalingentorhinal–hippocampal formation030104 developmental biologymedicine.anatomical_structureaxon outgrowthnervous systemCalcium030217 neurology & neurosurgeryMetabolic Networks and PathwaysCerebral cortex (New York, N.Y. : 1991)
researchProduct

Vascular pathology: Cause or effect in Alzheimer disease?

2018

Introduction: Alzheimer disease (AD) is the main cortical neurodegenerative disease. The incidence of this disease increases with age, causing significant medical, social and economic problems, especially in countries with ageing populations. Objective: This review aims to highlight existing evidence of how vascular dysfunction may contribute to cognitive impairment in AD, as well as the therapeutic possibilities that might arise from this evidence. Development: The vascular hypothesis emerged as an alternative to the amyloid cascade hypothesis as an explanation for the pathophysiology of AD. This hypothesis locates blood vessels as the origin for a variety of pathogenic pathways that lead …

0301 basic medicineContext (language use)DiseaseBlood–brain barrierlcsh:RC346-42903 medical and health sciences0302 clinical medicineAlzheimer DiseaseMaterials ChemistrymedicineDementiaHumanslcsh:Neurology. Diseases of the nervous systemNeuronsAmyloid beta-PeptidesVascular diseaseNeurodegenerationBrainmedicine.disease030104 developmental biologymedicine.anatomical_structureAgeingBlood-Brain BarrierCerebrovascular CirculationAlzheimer's diseasePsychologyNeuroscience030217 neurology & neurosurgeryNeurología (English Edition)
researchProduct

Impact of Perineuronal Nets on Electrophysiology of Parvalbumin Interneurons, Principal Neurons, and Brain Oscillations: A Review

2021

Perineuronal nets (PNNs) are specialized extracellular matrix structures that surround specific neurons in the brain and spinal cord, appear during critical periods of development, and restrict plasticity during adulthood. Removal of PNNs can reinstate juvenile-like plasticity or, in cases of PNN removal during early developmental stages, PNN removal extends the critical plasticity period. PNNs surround mainly parvalbumin (PV)-containing, fast-spiking GABAergic interneurons in several brain regions. These inhibitory interneurons profoundly inhibit the network of surrounding neurons via their elaborate contacts with local pyramidal neurons, and they are key contributors to gamma oscillations…

0301 basic medicineContext (language use)Neurosciences. Biological psychiatry. NeuropsychiatryReviewInhibitory postsynaptic potentialmemory03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineparvalbuminmedicinebiologyPerineuronal netLong-term potentiationCell BiologySpinal cordElectrophysiologyperineuronal nets (PNNs)030104 developmental biologymedicine.anatomical_structurenervous systemplasticityoscillationsbiology.proteinGABAergicNeuroscience030217 neurology & neurosurgeryParvalbuminRC321-571NeuroscienceFrontiers in Synaptic Neuroscience
researchProduct