Search results for "networks"
showing 10 items of 3260 documents
PDXK mutations cause polyneuropathy responsive to pyridoxal 5′‐phosphate supplementation
2019
OBJECTIVE: To identify disease-causing variants in autosomal recessive axonal polyneuropathy with optic atrophy and provide targeted replacement therapy. METHODS: We performed genome-wide sequencing, homozygosity mapping, and segregation analysis for novel disease-causing gene discovery. We used circular dichroism to show secondary structure changes and isothermal titration calorimetry to investigate the impact of variants on adenosine triphosphate (ATP) binding. Pathogenicity was further supported by enzymatic assays and mass spectroscopy on recombinant protein, patient-derived fibroblasts, plasma, and erythrocytes. Response to supplementation was measured with clinical validated rating sc…
Evaluation of HIV transmission clusters among natives and foreigners living in Italy
2020
We aimed at evaluating the characteristics of HIV-1 molecular transmission clusters (MTCs) among natives and migrants living in Italy, diagnosed between 1998 and 2018. Phylogenetic analyses were performed on HIV-1 polymerase (pol) sequences to characterise subtypes and identify MTCs, divided into small (SMTCs, 2&ndash
miRNAs and sports: tracking training status and potentially confounding diagnoses.
2016
Background The dependency of miRNA abundance from physiological processes such as exercises remains partially understood. We set out to analyze the effect of physical exercises on miRNA profiles in blood and plasma of endurance and strength athletes in a systematic manner and correlated differentially abundant miRNAs in athletes to disease miRNAs biomarkers towards a better understanding of how physical exercise may confound disease diagnosis by miRNAs. Methods We profiled blood and plasma of 29 athletes before and after exercise. With four samples analyzed for each individual we analyzed 116 full miRNomes. The study set-up enabled paired analyses of individuals. Affected miRNAs were invest…
Search for a Minimal Set of Parameters by Assessing the Total Optimization Potential for a Dynamic Model of a Biochemical Network.
2017
Selecting an efficient small set of adjustable parameters to improve metabolic features of an organism is important for a reduction of implementation costs and risks of unpredicted side effects. In practice, to avoid the analysis of a huge combinatorial space for the possible sets of adjustable parameters, experience-, and intuition-based subsets of parameters are often chosen, possibly leaving some interesting counter-intuitive combinations of parameters unrevealed. The combinatorial scan of possible adjustable parameter combinations at the model optimization level is possible; however, the number of analyzed combinations is still limited. The total optimization potential (TOP) approach is…
Comprehensive evaluation of coding region point mutations in microsatellite-unstable colorectal cancer
2018
Microsatellite instability (MSI) leads to accumulation of an excessive number of mutations in the genome, mostly small insertions and deletions. MSI colorectal cancers (CRCs), however, also contain more point mutations than microsatellite-stable (MSS) tumors, yet they have not been as comprehensively studied. To identify candidate driver genes affected by point mutations in MSI CRC, we ranked genes based on mutation significance while correcting for replication timing and gene expression utilizing an algorithm, MutSigCV. Somatic point mutation data from the exome kit-targeted area from 24 exome-sequenced sporadic MSI CRCs and respective normals, and 12 whole-genome-sequenced sporadic MSI CR…
Cell-cell bioelectrical interactions and local heterogeneities in genetic networks: a model for the stabilization of single-cell states and multicell…
2018
Genetic networks operate in the presence of local heterogeneities in single-cell transcription and translation rates. Bioelectrical networks and spatio-temporal maps of cell electric potentials can influence multicellular ensembles. Could cell-cell bioelectrical interactions mediated by intercellular gap junctions contribute to the stabilization of multicellular states against local genetic heterogeneities? We theoretically analyze this question on the basis of two well-established experimental facts: (i) the membrane potential is a reliable read-out of the single-cell electrical state and (ii) when the cells are coupled together, their individual cell potentials can be influenced by ensemb…
The Metabolic Building Blocks of a Minimal Cell
2020
This article belongs to the Section Evolutionary Biology.
pH-sensitive vibrational probe reveals a cytoplasmic protonated cluster in bacteriorhodopsin
2017
Infrared spectroscopy has been used in the past to probe the dynamics of internal proton transfer reactions taking place during the functional mechanism of proteins but has remained mostly silent to protonation changes in the aqueous medium. Here, by selectively monitoring vibrational changes of buffer molecules with a temporal resolution of 6 µs, we have traced proton release and uptake events in the light-driven proton-pump bacteriorhodopsin and correlate these to other molecular processes within the protein. We demonstrate that two distinct chemical entities contribute to the temporal evolution and spectral shape of the continuum band, an unusually broad band extending from 2,300 to well…
A stable brain from unstable components: Emerging concepts and implications for neural computation.
2017
Neuroscientists have often described the adult brain in similar terms to an electronic circuit board- dependent on fixed, precise connectivity. However, with the advent of technologies allowing chronic measurements of neural structure and function, the emerging picture is that neural networks undergo significant remodeling over multiple timescales, even in the absence of experimenter-induced learning or sensory perturbation. Here, we attempt to reconcile the parallel observations that critical brain functions are stably maintained, while synapse- and single-cell properties appear to be reformatted regularly throughout adult life. In this review, we discuss experimental evidence at multiple …
Weakly coupled map lattice models for multicellular patterning and collective normalization of abnormal single-cell states
2017
We present a weakly coupled map lattice model for patterning that explores the effects exerted by weakening the local dynamic rules on model biological and artificial networks composed of two-state building blocks (cells). To this end, we use two cellular automata models based on: (i) a smooth majority rule (model I) and (ii) a set of rules similar to those of Conway's Game of Life (model II). The normal and abnormal cell states evolve according with local rules that are modulated by a parameter $\kappa$. This parameter quantifies the effective weakening of the prescribed rules due to the limited coupling of each cell to its neighborhood and can be experimentally controlled by appropriate e…