Search results for "neutrino physics"
showing 10 items of 68 documents
Modular invariant dynamics and fermion mass hierarchies around τ = i
2021
We discuss fermion mass hierarchies within modular invariant flavour models. We analyse the neighbourhood of the self-dual point $\tau=i$, where modular invariant theories possess a residual $Z_4$ invariance. In this region the breaking of $Z_4$ can be fully described by the spurion $\epsilon \approx \tau - i$, that flips its sign under $Z_4$. Degeneracies or vanishing eigenvalues of fermion mass matrices, forced by the $Z_4$ symmetry at $\tau=i$, are removed by slightly deviating from the self-dual point. Relevant mass ratios are controlled by powers of $|\epsilon|$. We present examples where this mechanism is a key ingredient to successfully implement an hierarchical spectrum in the lepto…
Effective Lagrangian approach to neutrinoless double beta decay and neutrino masses
2012
Neutrinoless double beta ($0\nu\beta\beta$) decay can in general produce electrons of either chirality, in contrast with the minimal Standard Model (SM) extension with only the addition of the Weinberg operator, which predicts two left-handed electrons in the final state. We classify the lepton number violating (LNV) effective operators with two leptons of either chirality but no quarks, ordered according to the magnitude of their contribution to \znbb decay. We point out that, for each of the three chirality assignments, $e_Le_L, e_Le_R$ and $e_Re_R$, there is only one LNV operator of the corresponding type to lowest order, and these have dimensions 5, 7 and 9, respectively. Neutrino masse…
Coherence in neutrino oscillations
2011
The theory of neutrino oscillations has turned out to be the most reasonable explanation to the observed violations in lepton number conservation of solar and atmospheric neutrino fluxes. A derivation of the most important results of this theory is first given using a plane wave treatment and subsequently using a three-dimensional shape-independent wave packet approach. Both methods give the same oscillation patterns, but only the latter one serves as a decent starting point for analyzing coherence in neutrino oscillations. A numerical analysis of the oscillation patterns on various distance scales is also given to graphically illustrate the phenomenon of neutrino oscillation and loss of co…
Neutrino Physics with JUNO
2016
The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy as a primary physics goal. It is also capable of observing neutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, solar neutrinos, as well as exotic searches such as nucleon decays, dark matter, sterile neutrinos, etc. We present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. By detecting reactor antineutrinos from two power plan…
Neutrino Flavor Sensitivity of Large Liquid Scintillator Detectors
2015
Abstract Scintillator detectors are known for their good light yield, energy resolution, timing characteristics and pulse shape discrimination capabilities. These features make the next-generation liquid scintillation detector LENA[1] (Low Energy Neutrino Astronomy) the optimal choice for a wide range of astro-particle topics including supernova-, solar-, and geo neutrinos. In addition to the excellent calorimetric and timing properties, scintillartor detectors (LSDs) are also capable of topology reconstruction sufficient to discriminate with adequate efficiency between electron and muon neutrino induced charge current events and neutral current events in the GeV energy range. This feature …
Improved global fit to Non-Standard neutrino Interactions using COHERENT energy and timing data
2020
We perform a global fit to neutrino oscillation and coherent neutrino-nucleus scattering data, using both timing and energy information from the COHERENT experiment. The results are used to set model-independent bounds on four-fermion effective operators inducing non-standard neutral-current neutrino interactions. We quantify the allowed ranges for their Wilson coefficients, as well as the status of the LMA-D solution, for a wide class of new physics models with arbitrary ratios between the strength of the operators involving up and down quarks. Our results are presented for the COHERENT experiment alone, as well as in combination with the global data from oscillation experiments. We also q…
Sterile neutrinos or flux uncertainties? — Status of the reactor anti-neutrino anomaly
2017
The $\sim 3\sigma$ discrepancy between the predicted and observed reactor anti-neutrino flux, known as the reactor anti-neutrino anomaly, continues to intrigue. The recent discovery of an unexpected bump in the reactor anti-neutrino spectrum, as well as indications that the flux deficit is different for different fission isotopes seems to disfavour the explanation of the anomaly in terms of sterile neutrino oscillations. We critically review this conclusion in view of all available data on electron (anti)neutrino disappearance. We find that the sterile neutrino hypothesis cannot be rejected based on global data and is only mildly disfavored compared to an individual rescaling of neutrino fl…
The seesaw portal in testable models of neutrino masses
2017
A Standard Model extension with two Majorana neutrinos can explain the measured neutrino masses and mixings, and also account for the matter-antimatter asymmetry in a region of parameter space that could be testable in future experiments. The testability of the model relies to some extent on its minimality. In this paper we address the possibility that the model might be extended by extra generic new physics which we parametrize in terms of a low-energy effective theory. We consider the effects of the operators of the lowest dimensionality, $d=5$, and evaluate the upper bounds on the coefficients so that the predictions of the minimal model are robust. One of the operators gives a new produ…
The Inverse Seesaw Family: Dirac And Majorana
2021
After developing a general criterion for deciding which neutrino mass models belong to the category of inverse seesaw models, we apply it to obtain the Dirac analogue of the canonical Majorana inverse seesaw model. We then generalize the inverse seesaw model and obtain a class of inverse seesaw mechanisms both for Majorana and Dirac neutrinos. We further show that many of the models have double or multiple suppressions coming from tiny symmetry breaking "$\mu$-terms". These models can be tested both in colliders and with the observation of lepton flavour violating processes.
Fair scans of the seesaw. Consequences for predictions on LFV processes
2011
22 páginas, 5 figuras.-- El Pdf es la versión pre-print: arXiv:1010.5751v1