Search results for "nlo"
showing 10 items of 285 documents
Advanced performance monitoring for self-healing cellular mobile networks
2015
This dissertation is devoted to development and validation of advanced per- formance monitoring system for existing and future cellular mobile networks. Knowledge mining techniques are employed for analysis of user specific logs, collected with Minimization of Drive Tests (MDT) functionality. Ever increas- ing quality requirements, expansion of the mobile networks and their extend- ing heterogeneity, call for effective automatic means of performance monitoring. Nowadays, network operation is mostly controlled manually through aggregated key performance indicators and statistical profiles. These methods are are not able to fully address the dynamism and complexity of modern mobile networks. Se…
Perustulokeskustelu Suomessa : sisällönanalyysi perustulokeskustelusta Helsingin Sanomien mielipidekirjoituksissa 1990-2015
2016
TIIVISTELMÄ JYVÄSKYLÄN YLIOPISTO Yhteiskuntatieteellinen tiedekunta, sosiaalityön yksikkö MANNINEN, TEEMU: Perustulokeskustelu Suomessa – Sisällönanalyysi perustulokeskustelusta Helsingin Sanomien mielipidekirjoituksissa 1990-2015 Pro gradu –tutkielma, 86 s. Ohjaaja: Kati Närhi Elokuu 2016 Tutkimuksessa selvitetään Helsingin Sanomien mielipidekirjoitusten perusteella millaisena Suomessa käyty perustulokeskustelu on näyttäytynyt vuosien 1990-2015 välisenä aikana. Perustulolla tarkoitetaan kuukausittain kansalaisille vastikkeettomasti maksettavaa rahasummaa, jonka saamiseksi ei edellytetä työvelvoitetta eikä sen saaminen ole sidonnainen varallisuuteen, ansioihin, asuinpaikkaan tai siviilisäät…
Intelligent solutions for real-life data-driven applications
2017
The subject of this thesis belongs to the topic of machine learning or, specifically, to the development of advanced methods for regression analysis, clustering, and anomaly detection. Industry is constantly seeking improved production practices and minimized production time and costs. In connection to this, several industrial case studies are presented in which mathematical models for predicting paper quality were proposed. The most important variables for the prediction models are selected based on information-theoretic measures and regression trees approach. The rest of the original papers are devoted to unsupervised machine learning. The main focus is developing advanced spectral cluster…
Adaptive framework for network traffic classification using dimensionality reduction and clustering
2012
Information security has become a very important topic especially during the last years. Web services are becoming more complex and dynamic. This offers new possibilities for attackers to exploit vulnerabilities by inputting malicious queries or code. However, these attack attempts are often recorded in server logs. Analyzing these logs could be a way to detect intrusions either periodically or in real time. We propose a framework that preprocesses and analyzes these log files. HTTP queries are transformed to numerical matrices using n-gram analysis. The dimensionality of these matrices is reduced using principal component analysis and diffusion map methodology. Abnormal log lines can then …
Anomaly Detection Algorithms for the Sleeping Cell Detection in LTE Networks
2015
The Sleeping Cell problem is a particular type of cell degradation in Long-Term Evolution (LTE) networks. In practice such cell outage leads to the lack of network service and sometimes it can be revealed only after multiple user complains by an operator. In this study a cell becomes sleeping because of a Random Access Channel (RACH) failure, which may happen due to software or hardware problems. For the detection of malfunctioning cells, we introduce a data mining based framework. In its core is the analysis of event sequences reported by a User Equipment (UE) to a serving Base Station (BS). The crucial element of the developed framework is an anomaly detection algorithm. We compare perfor…
Semi-automatic literature mapping of participatory design studies 2006--2016
2018
The paper presents a process of semi-automatic literature mapping of a comprehensive set of participatory design studies between 2006--2016. The data of 2939 abstracts were collected from 14 academic search engines and databases. With the presented method, we were able to identify six education-related clusters of PD articles. Furthermore, we point out that the identified clusters cover the majority of education-related words in the whole data. This is the first attempt to systematically map the participatory design literature. We argue that by continuing our work, we can help to perceive a coherent structure in the body of PD research.
An Approach for Network Outage Detection from Drive-Testing Databases
2012
A data-mining framework for analyzing a cellular network drive testing database is described in this paper. The presented method is designed to detect sleeping base stations, network outage, and change of the dominance areas in a cognitive and self-organizing manner. The essence of the method is to find similarities between periodical network measurements and previously known outage data. For this purpose, diffusion maps dimensionality reduction and nearest neighbor data classification methods are utilized. The method is cognitive because it requires training data for the outage detection. In addition, the method is autonomous because it uses minimization of drive testing (MDT) functionalit…
Biased graph walks for RDF graph embeddings
2017
Knowledge Graphs have been recognized as a valuable source for background information in many data mining, information retrieval, natural language processing, and knowledge extraction tasks. However, obtaining a suitable feature vector representation from RDF graphs is a challenging task. In this paper, we extend the RDF2Vec approach, which leverages language modeling techniques for unsupervised feature extraction from sequences of entities. We generate sequences by exploiting local information from graph substructures, harvested by graph walks, and learn latent numerical representations of entities in RDF graphs. We extend the way we compute feature vector representations by comparing twel…
Research literature clustering using diffusion maps
2013
We apply the knowledge discovery process to the mapping of current topics in a particular field of science. We are interested in how articles form clusters and what are the contents of the found clusters. A framework involving web scraping, keyword extraction, dimensionality reduction and clustering using the diffusion map algorithm is presented. We use publicly available information about articles in high-impact journals. The method should be of use to practitioners or scientists who want to overview recent research in a field of science. As a case study, we map the topics in data mining literature in the year 2011. peerReviewed
An Efficient Network Log Anomaly Detection System Using Random Projection Dimensionality Reduction
2014
Network traffic is increasing all the time and network services are becoming more complex and vulnerable. To protect these networks, intrusion detection systems are used. Signature-based intrusion detection cannot find previously unknown attacks, which is why anomaly detection is needed. However, many new systems are slow and complicated. We propose a log anomaly detection framework which aims to facilitate quick anomaly detection and also provide visualizations of the network traffic structure. The system preprocesses network logs into a numerical data matrix, reduces the dimensionality of this matrix using random projection and uses Mahalanobis distance to find outliers and calculate an a…