Search results for "nmda"
showing 10 items of 147 documents
Oxidative stress upregulates the NMDA receptor on cerebrovascular endothelium.
2009
N-methyl-d-aspartate receptor (NMDA-R)-mediated oxidative stress has been implicated in blood-brain barrier (BBB) disruption in a variety of neuropathological diseases. Although some interactions between both phenomena have been elucidated, possible influences of reactive oxygen species (ROS) on the NMDA-R itself have so far been neglected. The objective of this study was to examine how the cerebroendothelial NMDA-R is affected by exposure to oxidative stress and to assess possible influences on BBB integrity. RT-PCR confirmed several NMDA-R subunits (NR1, NR2B-D) expressed in the bEnd3 cell line (murine cerebrovascular endothelial cells). NR1 protein expression after exposure to ROS was ob…
The effects of glutamate receptor antagonists on cerebellar granule cell survival and development.
2007
N-Methyl-d-aspartate (NMDA) receptor stimulation promotes neuronal survival and differentiation under both in vitro and in vivo conditions. We studied the effects of various NMDA receptor antagonists acting at different NMDA receptor binding sites and non-NMDA receptor antagonists on the development and survival of cerebellar granule cell (CGC) culture. Only three of the drugs tested induced neurotoxicity-MK-801 (non-competitive NMDA channel blocking antagonist), ifenprodil (an antagonist of the NR2B site and polyamine site of the NMDA receptor) and L-701.324 (full antagonist at glycine site), while CGP-37849 (a competitive NMDA antagonist), (+)-HA-966 (a partial agonist of the glycine site…
Action of anticonvulsants on hippocampal slices in Mg-free medium
1989
The effects of six prototype anticonvulsant drugs were investigated on epileptiform field potential discharges evoked in hippocampal slices of rats by removing magnesium ions from the perfusion fluid in order to reveal a possible interaction with N-methyl-D-aspartate (NMDA) receptor activation. All drugs reduced the multiple discharges with the following order of potency: midazolam greater than carbamazepine = phenytoin = phenobarbital greater than ethosuximide = valproate. They had a stronger depressant effect on the later population spikes but none of them abolished the epileptiform discharge. These effects can be explained by known mechanisms of action of the anticonvulsants tested and l…
Changes in NMDA-receptor function in the first week following laser-induced lesions in rat visual cortex.
2011
Focal brain injuries are accompanied by processes of functional reorganization that partially compensate the functional loss. In a previous study, extracellular recordings at the border of a laser-induced lesion in the visual cortex of rats showed an enhanced synaptic plasticity, which was mediated by the activity of NR2B-contaning NMDA-receptors (NMDARs) shedding light on the potential cellular mechanisms underlying this reorganization. Given the potentially important contribution of NMDARs in processes of functional reorganization, in the present study, we used the same lesion model to further investigate lesion-induced changes in function and localization of NMDARs in the vicinity of the…
The role of N-methyl-D-asparate receptors in neurogenesis.
2006
The dentate gyrus continues to incorporate granule neurons during adulthood. Among the factors that we know modulate adult neurogenesis in the dentate gyrus, one of the first studied was the influence of excitatory amino-acids. These neurotransmitters, acting through NMDA receptors, are able to modulate both the proliferation of progenitor cells as well as the rate of neurogenesis in the adult dentate gyrus. However, the mechanisms by which these processes are influenced are not clearly known. Although there is no anatomical evidence of NMDA receptor expression in adult hippocampal progenitor cells or differentiating granule neurons, electrophysiological data and in vitro studies suggest th…
Subplate Cells: Amplifiers of Neuronal Activity in the Developing Cerebral Cortex
2009
Due to their unique structural and functional properties, subplate cells are ideally suited to function as important amplifying units within the developing neocortical circuit. Subplate neurons have extensive dendritic and axonal ramifications and relatively mature functional properties, i.e. their action potential firing can exceed frequencies of 40 Hz. At earliest stages of corticogenesis subplate cells receive functional synaptic inputs from the thalamus and from other cortical and non-cortical sources. Glutamatergic and depolarizing GABAergic inputs arise from cortical neurons and neuromodulatory inputs arise from the basal forebrain and other sources. Activation of postsynaptic metabot…
Neurotoxicity in Rat Cortical Cells Caused by N-Methyl-D-Aspartate (NMDA) and gp120 of HIV-1: Induction and Pharmacological Intervention
1996
Incubation of highly enriched neurons from rat cerebral cortex with the human immunodeficiency virus type 1 (HIV-1) coat protein gpl20 for 18 h results in fragmentation of DNA at internucleosomal linkers, a feature of apoptosis. We report that neurons respond to exposure to gp120 with an increased release of arachidonic acid via activation of phospholipase A2. This process is not inhibited by antagonists of the N-methyl-D-aspartate (NMDA) receptor channels. To investigate the influence of arachidonic acid on the sensitivity of NMDA receptor towards its aganist, low concentrations of NMDA were coadministered with arachidonic acid. Under these conditions the NMDA-mediated cytotoxicity was enh…
Ketamine’s Effects on the Glutamatergic and GABAergic Systems: A Proteomics and Metabolomics Study in Mice
2018
Ketamine, a noncompetitive, voltage-dependent N-Methyl-D-aspartate receptor (NMDAR) antagonist, has been shown to have a rapid antidepressant effect and is used for patients experiencing treatment-resistant depression. We carried out a time-dependent targeted mass spectrometry-based metabolomics profiling analysis combined with a quantitative based on in vivo <sup>15</sup>N metabolic labeling proteome comparison of ketamine- and vehicle-treated mice. The metabolomics and proteomics datasets were used to further elucidate ketamine’s mode of action on the gamma-aminobutyric acid (GABA)ergic and glutamatergic systems. In addition, myelin basic protein levels were analyzed by Wester…
Postsynaptic NO/cGMP Increases NMDA Receptor Currents via Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels in the Hippocampus
2013
The nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) signaling cascade participates in the modulation of synaptic transmission. The effects of NO are mediated by the NO-sensitive cGMP-forming guanylyl cyclases (NO-GCs), which exist in 2 isoforms with indistinguishable regulatory properties. The lack of long-term potentiation (LTP) in knock-out (KO) mice deficient in either one of the NO-GC isoforms indicates the contribution of both NO-GCs to LTP. Recently, we showed that the NO-GC1 isoform is located presynaptically in glutamatergic neurons and increases the glutamate release via hyperpolarization-activated cyclic nucleotide (HCN)-gated channels in the hippocampus. Electrophysiologi…
Nitric oxide and excitatory postsynaptic currents in immature rat sympathetic preganglionic neurons in vitro.
1997
Neuronal nitric oxide synthase immunoreactivity was localized to sympathetic preganglionic neurons of the intermediolateral cell column and cyclic GMP immunoreactivity to nerve fibers projecting into the intermediolateral cell column of 20-25-day-old rats. Whole-cell patch-clamp recordings were made from sympathetic preganglionic neurons in spinal cord slices of immature rats and the role of nitric oxide and cyclic GMP on excitatory postsynaptic currents was studied. Superfusing the slices with the nitric oxide precursor L-arginine (300 microM) increased the amplitude of evoked excitatory postsynaptic currents as well as the frequency of spontaneous miniature excitatory postsynaptic current…