Search results for "nobelium"

showing 10 items of 23 documents

Laser spectroscopy studies on nobelium

2017

Laser spectroscopy of the heaviest elements provides high-precision data on their atomic and nuclear properties. For example, atomic level energies and ionization potentials allow us to probe the influence of relativistic effects on their atomic structure and to benchmark state-of-the-art atomic structure calculations. In addition, it offers an alternative route to determine nuclear properties like spins, magnetic moments and quadrupole moments in a nuclear model-independent way. Recently, a sensitive method based on resonant laser ionization has been applied to nobelium isotopes around N = 152 at GSI Darmstadt. In pioneering experiments, several atomic states have been identified extending…

Spins010308 nuclear & particles physicsPhysicsQC1-999FermiumNuclear Theorychemistry.chemical_elementLaser01 natural scienceslaw.inventionchemistrylawIonization0103 physical sciencesQuadrupolePhysics::Atomic PhysicsNobeliumAtomic physicsNuclear Experiment010306 general physicsRelativistic quantum chemistrySpectroscopyEPJ Web of Conferences
researchProduct

Deformations and quasiparticle spectra of nuclei in the nobelium region

2013

We have performed self-consistent Skyrme Hartree-Fock-Bogolyubov calculations for nuclei close to $^{254}$No. Self-consistent deformations, including $\beta_{2,4,6,8}$ as functions of the rotational frequency, were determined for even-even nuclei $^{246,248,250}$Fm, $^{252,254}$No, and $^{256}$Rf. The quasiparticle spectra for N=151 isotones and Z=99 isotopes were calculated and compared with experimental data and the results of Woods-Saxon calculations. We found that our calculations give high-order deformations similar to those obtained for the Woods-Saxon potential, and that the experimental quasiparticle energies are reasonably well reproduced.

PhysicsNuclear Theoryta114IsotopeNuclear Theorychemistry.chemical_elementFOS: Physical sciences16. Peace & justice7. Clean energySpectral lineNuclear Theory (nucl-th)chemistryQuasiparticleNobeliumAtomic physicsNuclear theoryFission and Properties of Neutron-Rich Nuclei, pg. 381 (2013)
researchProduct

Probing Sizes and Shapes of Nobelium Isotopes by Laser Spectroscopy

2018

Until recently, ground-state nuclear moments of the heaviest nuclei could only be inferred from nuclear spectroscopy, where model assumptions are required. Laser spectroscopy in combination with modern atomic structure calculations is now able to probe these moments directly, in a comprehensive and nuclear-model-independent way. Here we report on unique access to the differential mean-square charge radii of ^{252,253,254}No, and therefore to changes in nuclear size and shape. State-of-the-art nuclear density functional calculations describe well the changes in nuclear charge radii in the region of the heavy actinides, indicating an appreciable central depression in the deformed proton densi…

IN-BEAMNuclear TheoryGeneral Physics and Astronomychemistry.chemical_element[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]DROPLET-MODEL01 natural sciencesEffective nuclear chargeNO-2540103 physical sciencesNeutronSUPERHEAVY ELEMENTS010306 general physicsSpectroscopyMASSESNuclear ExperimentHyperfine structurePhysicsMagnetic momentNUCLEI010308 nuclear & particles physicsPRODUCTSchemistryQuadrupoleUPDATENobeliumAtomic physicsSHIPNuclear density
researchProduct

Recent developments for high-precision mass measurements of the heaviest elements at SHIPTRAP

2013

Abstract Atomic nuclei far from stability continue to challenge our understanding. For example, theoretical models have predicted an “island of stability” in the region of the superheavy elements due to the closure of spherical proton and neutron shells. Depending on the model, these are expected at Z = 114, 120 or even 126 and N = 172 or 184. Valuable information on the road to the island of stability is derived from high-precision mass measurements, which give direct access to binding energies of short-lived trans-uranium nuclei. Recently, direct mass measurements at SHIPTRAP have been extended to nobelium and lawrencium isotopes around the deformed shell gap N = 152. In order to further …

Nuclear and High Energy PhysicsProtonIsotopeChemistryNuclear TheoryBinding energychemistry.chemical_elementIsland of stabilityNuclear physicsAtomic nucleusNeutronNobeliumInstrumentationLawrenciumNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Rotational properties of nuclei aroundNo254investigated using a spectroscopic-quality Skyrme energy density functional

2014

Background: Nuclei in the $Z\ensuremath{\approx}100$ mass region represent the heaviest systems where detailed spectroscopic information is experimentally available. Although microscopic-macroscopic and self-consistent models have achieved great success in describing the data in this mass region, a fully satisfying precise theoretical description is still missing.Purpose: By using fine-tuned parametrizations of the energy density functionals, the present work aims at an improved description of the single-particle properties and rotational bands in the nobelium region. Such locally optimized parametrizations may have better properties when extrapolating towards the superheavy region.Methods:…

PhysicsCoupling constantNuclear and High Energy PhysicsProtonNuclear Theorychemistry.chemical_elementMoment of inertiaNuclear physicschemistryPairingQuasiparticleNeutronNobeliumAtomic physicsParametrizationPhysical Review C
researchProduct

First Ionization Potentials of Fm, Md, No, and Lr

2018

We report the first ionization potentials (IP1) of the heavy actinides, fermium (Fm, atomic number Z = 100), mendelevium (Md, Z = 101), nobelium (No, Z = 102), and lawrencium (Lr, Z = 103), determined using a method based on a surface ionization process coupled to an online mass separation technique in an atom-at-a-time regime. The measured IP1 values agree well with those predicted by state-of-the-art relativistic calculations performed alongside the present measurements. Similar to the well-established behavior for the lanthanides, the IP1 values of the heavy actinides up to No increase with filling up the 5f orbital, while that of Lr is the lowest among the actinides. These results clear…

ENERGIESThermal ionizationchemistry.chemical_element01 natural sciencesBiochemistryCatalysisColloid and Surface ChemistrySURFACE-IONIZATIONPhysics in GeneralCHEMISTRYIonization0103 physical sciencesELEMENTS010306 general physicsSPECTROSCOPY010304 chemical physicsChemistryFermiumGeneral ChemistryActinideATOMMendeleviumNobeliumAtomic numberAtomic physicsLawrenciumJournal of the American Chemical Society
researchProduct

A gas-jet apparatus for high-resolution laser spectroscopy on the heaviest elements at SHIP

2020

© 2019 Elsevier B.V. Laser spectroscopy enables the determination of fundamental atomic and nuclear properties with high precision. In view of the low production rates of the heaviest elements, a high total efficiency is a crucial requirement for any experimental setup to be used in on-line experiments. The setup requires the use of gas stopping techniques to slow down the radionuclides of interest. In previous studies laser spectroscopy was performed inside a gas-filled stopping cell with a limited spectral resolution of a few GHz. Collisional broadening inside stopping cells ultimately limits the precision of laser spectroscopic studies and hampers in particular hyperfine spectroscopy. Th…

Nuclear and High Energy PhysicsJet (fluid)Materials science010308 nuclear & particles physicsbusiness.industryResolution (electron density)chemistry.chemical_elementLaser7. Clean energy01 natural scienceslaw.inventionLaser linewidthOpticschemistrylaw0103 physical sciencesNobeliumSpectral resolution010306 general physicsSpectroscopybusinessInstrumentationHyperfine structure
researchProduct

Developments for resonance ionization laser spectroscopy of the heaviest elements at SHIP

2016

Abstract The experimental determination of atomic levels and the first ionization potential of the heaviest elements ( Z ⩾ 100 ) is key to challenge theoretical predictions and to reveal changes in the atomic shell structure. These elements are only artificially produced in complete-fusion evaporation reactions at on-line facilities such as the GSI in Darmstadt at a rate of, at most, a few atoms per second. Hence, highly sensitive spectroscopic methods are required. Laser spectroscopy is one of the most powerful and valuable tools to investigate atomic properties. In combination with a buffer-gas filled stopping cell, the Radiation Detected Resonance Ionization Spectroscopy (RADRIS) techniq…

YtterbiumNuclear and High Energy Physics010308 nuclear & particles physicschemistry.chemical_elementInstrumental chemistry01 natural sciencesAtmospheric-pressure laser ionizationchemistryExcited state0103 physical sciencesPhysics::Atomic PhysicsNobeliumLaser-induced breakdown spectroscopyIonization energyAtomic physics010306 general physicsSpectroscopyInstrumentationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Atom-at-a-time laser resonance ionization spectroscopy of nobelium

2016

Resonance ionization spectroscopy of nobelium (atomic number 102) reveals its ground-state transition and an upper limit for its ionization potential, paving the way to characterizing even heavier elements via optical spectroscopy. Characterizing the heaviest elements in the periodic table is a gruelling task because they are radioactive, exist only for split seconds at a time and need to be artificially produced in sufficient quantities by complicated procedures. The heaviest element that has been characterized by optical spectroscopy is fermium, which has an atomic number of 100. Mustapha Laatiaoui et al. extend the methods used for fermium to perform optical spectroscopy on nobelium (ato…

PhysicsMultidisciplinary010308 nuclear & particles physicsFermiumchemistry.chemical_element[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural scienceschemistry13. Climate actionIonization0103 physical sciencesAtomAtomic numberNobeliumPhysics::Atomic PhysicsAtomic physics010306 general physicsSpectroscopyRelativistic quantum chemistryLawrenciumNature
researchProduct

Precision Measurement of the First Ionization Potential of Nobelium

2018

One of the most important atomic properties governing an element's chemical behavior is the energy required to remove its least-bound electron, referred to as the first ionization potential. For the heaviest elements, this fundamental quantity is strongly influenced by relativistic effects which lead to unique chemical properties. Laser spectroscopy on an atom-at-a-time scale was developed and applied to probe the optical spectrum of neutral nobelium near the ionization threshold. The first ionization potential of nobelium is determined here with a very high precision from the convergence of measured Rydberg series to be 6.626 21±0.000 05  eV. This work provides a stringent benchmark for st…

ENERGIESGeneral Physics and Astronomychemistry.chemical_elementElectron[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energysymbols.namesakeIonizationEQUAL-TO 1040103 physical sciencesLAWRENCIUMBUFFER GASPhysics::Atomic PhysicsSUPERHEAVY ELEMENTSLASER SPECTROSCOPY010306 general physicsSpectroscopyPhysicsNEUTRAL YTTERBIUM010308 nuclear & particles physicsHEAVIEST ELEMENTSchemistryRydberg formulasymbolsEXCITED-LEVELSNobeliumACTINIDESIonization energyAtomic physicsRelativistic quantum chemistryLawrencium
researchProduct