Search results for "non-negative matrix factorization"

showing 10 items of 20 documents

Intelligent Knowledge Understanding from Students Questionnaires: A Case Study

2022

Learning Analytics techniques are widely used to improve students’ performance. Data collected from students’ assessments are helpful to predict their success and questionnaires are extensively adopted to assess students’ knowledge. Several mathematical models studying the correlation between students’ hidden skills and their performance to questionnaires’ items have been introduced. Among them, Non-negative matrix factorizations (NMFs) have been proven to be effective in automatically extracting hidden skills, a time-consuming activity that is usually tackled manually prone to subjective interpretations. In this paper, we present an intelligent data analysis approach based upon NMF. Data a…

QuestionnairesSettore INF/01 - InformaticaLatent skillsNon-negative matrix factorizationLearning analytics
researchProduct

Nonnegative signal factorization with learnt instrument models for sound source separation in close-microphone recordings

2013

Close-microphone techniques are extensively employed in many live music recordings, allowing for interference rejection and reducing the amount of reverberation in the resulting instrument tracks. However, despite the use of directional microphones, the recorded tracks are not completely free from source interference, a problem which is commonly known as microphone leakage. While source separation methods are potentially a solution to this problem, few approaches take into account the huge amount of prior information available in this scenario. In fact, besides the special properties of close-microphone tracks, the knowledge on the number and type of instruments making up the mixture can al…

ReverberationInstruments musicalsComputer sciencebusiness.industryMicrophoneMúsica -- InformàticaSignalNon-negative matrix factorizationSet (abstract data type)FactorizationInterference (communication)Source separationComputer visionArtificial intelligenceMicròfonsbusinessEURASIP Journal on Advances in Signal Processing
researchProduct

Speeding up the Consensus Clustering methodology for microarray data analysis

2010

Abstract Background The inference of the number of clusters in a dataset, a fundamental problem in Statistics, Data Analysis and Classification, is usually addressed via internal validation measures. The stated problem is quite difficult, in particular for microarrays, since the inferred prediction must be sensible enough to capture the inherent biological structure in a dataset, e.g., functionally related genes. Despite the rich literature present in that area, the identification of an internal validation measure that is both fast and precise has proved to be elusive. In order to partially fill this gap, we propose a speed-up of Consensus (Consensus Clustering), a methodology whose purpose…

Settore INF/01 - Informaticalcsh:QH426-470Computer scienceResearchApplied MathematicsStability (learning theory)InferenceApproximation algorithmcomputer.software_genreNon-negative matrix factorizationIdentification (information)lcsh:GeneticsComputingMethodologies_PATTERNRECOGNITIONComputational Theory and Mathematicslcsh:Biology (General)Structural BiologyConsensus clusteringBenchmark (computing)Data mininginternal validation measures data mining microarray data NMFCluster analysiscomputerMolecular Biologylcsh:QH301-705.5Algorithms for Molecular Biology
researchProduct

Archetypoids: A new approach to define representative archetypal data

2015

[EN] The new concept archetypoids is introduced. Archetypoid analysis represents each observation in a dataset as a mixture of actual observations in the dataset, which are pure type or archetypoids. Unlike archetype analysis, archetypoids are real observations, not a mixture of observations. This is relevant when existing archetypal observations are needed, rather than fictitious ones. An algorithm is proposed to find them and some of their theoretical properties are introduced. It is also shown how they can be obtained when only dissimilarities between observations are known (features are unavailable). Archetypoid analysis is illustrated in two design problems and several examples, compar…

Statistics and ProbabilityConvex hullArchetypebusiness.industryApplied MathematicsNon-negative matrix factorizationExtremal pointType (model theory)Unsupervised learningNon-negative matrix factorizationComputational MathematicsComputational Theory and MathematicsConvex hullUnsupervised learningExtremal pointArtificial intelligencebusinessArchetypeMathematics
researchProduct

Non-negative matrix factorization Vs. FastICA on mismatch negativity of children

2009

In this presentation two event-related potentials, mismatch negativity (MMN) and P3a, are extracted from EEG by non-negative matrix factorization (NMF) simultaneously. Typically MMN recordings show a mixture of MMN, P3a, and responses to repeated standard stimuli. NMF may release the source independence assumption and data length limitations required by Fast independent component analysis (FastICA). Thus, in theory NMF could reach better separation of the responses. In the current experiment MMN was elicited by auditory duration deviations in 102 children. NMF was performed on the time-frequency representation of the raw data to estimate sources. Support to Absence Ratio (SAR) of the MMN co…

business.industrySpeech recognitionMismatch negativityPattern recognitionbehavioral disciplines and activitiesIndependent component analysisElectronic mailMatrix decompositionNon-negative matrix factorizationP3aTime–frequency representationFastICAArtificial intelligencebusinesspsychological phenomena and processesMathematics2009 International Joint Conference on Neural Networks
researchProduct

Assessment of nonnegative matrix factorization algorithms for electroencephalography spectral analysis.

2020

AbstractBackgroundNonnegative matrix factorization (NMF) has been successfully used for electroencephalography (EEG) spectral analysis. Since NMF was proposed in the 1990s, many adaptive algorithms have been developed. However, the performance of their use in EEG data analysis has not been fully compared. Here, we provide a comparison of four NMF algorithms in terms of accuracy of estimation, stability (repeatability of the results) and time complexity of algorithms with simulated data. In the practical application of NMF algorithms, stability plays an important role, which was an emphasis in the comparison. A Hierarchical clustering algorithm was implemented to evaluate the stability of NM…

lcsh:Medical technologyComputer scienceBiomedical EngineeringStability (learning theory)ElectroencephalographySignal-To-Noise RatioClusteringNon-negative matrix factorizationBiomaterialsNonnegative matrix factorization03 medical and health sciencesklusterit0302 clinical medicineEeg dataalgoritmitmedicineHumansRadiology Nuclear Medicine and imagingSpectral analysisstabiilius (muuttumattomuus)EEGCluster analysisTime complexity030304 developmental biology0303 health sciencesRadiological and Ultrasound Technologymedicine.diagnostic_testResearchnonnegative matrix factorizationElectroencephalographySignal Processing Computer-AssistedGeneral MedicinestabilityModels TheoreticalHierarchical clusteringlcsh:R855-855.5AlgorithmStability030217 neurology & neurosurgeryAlgorithmsclusteringspektrianalyysiBiomedical engineering online
researchProduct

Identical fits of nonnegative matrix/tensor factorization may correspond to different extracted event-related potentials

2010

Nonnegative Matrix / Tensor factorization (NMF/NTF) have been used in the study of EEG, and the fit (explained variation) is often used to evaluate the performance of a nonnegative decomposition algorithm. However, this parameter only reveals the information derived from the mathematical model and just exhibits the reliability of the algorithms, and the property of EEG can not be reflected. If fits of two algorithms are identical, it is necessary to examine whether the desired components extracted by them are identical too. In order to verify this doubt, we performed NMF and NTF on the same dataset of an auditory event-related potentials (ERPs), and found that the identical fits of NMF and …

medicine.diagnostic_testComponent (thermodynamics)Property (programming)business.industryFeature extractionPattern recognitionElectroencephalographyMatrix decompositionNon-negative matrix factorizationTime–frequency analysismedicineArtificial intelligenceNonnegative matrixbusinessMathematicsThe 2010 International Joint Conference on Neural Networks (IJCNN)
researchProduct

Extract Mismatch Negativity and P3a through Two-Dimensional Nonnegative Decomposition on Time-Frequency Represented Event-Related Potentials

2010

This study compares the row-wise unfolding nonnegative tensor factorization (NTF) and the standard nonnegative matrix factorization (NMF) in extracting time-frequency represented event-related potentials—mismatch negativity (MMN) and P3a from EEG under the two-dimensional decomposition The criterion to judge performance of NMF and NTF is based on psychology knowledge of MMN and P3a MMN is elicited by an oddball paradigm and may be proportionally modulated by the attention So, participants are usually instructed to ignore the stimuli However the deviant stimulus inevitably attracts some attention of the participant towards the stimuli Thus, P3a often follows MMN As a result, if P3a was large…

medicine.diagnostic_testbusiness.industrySpeech recognitionMismatch negativityPattern recognitionElectroencephalographyNon-negative matrix factorizationTime–frequency analysisP3aEvent-related potentialFeature (machine learning)medicineArtificial intelligencebusinessOddball paradigmMathematics
researchProduct

Information Extraction from Binary Skill Assessment Data with Machine Learning

2021

Strength training exercises are essential for rehabilitation, improving our health as well as in sports. For optimal and safe training, educators and trainers in the industry should comprehend exercise form or technique. Currently, there is a lack of tools measuring in-depth skills of strength training experts. In this study, we investigate how data mining methods can be used to identify novel and useful skill patterns from a binary multiple choice questionnaire test designed to measure the knowledge level of strength training experts. A skill test assessing exercise technique expertise and comprehension was answered by 507 fitness professionals with varying backgrounds. A triangulated appr…

non-negative matrix factorizationliikuntataidotkoneoppiminenmittarit (mittaus)klusterianalyysidata miningvoimaharjoittelutiedonlouhintabinary dataclusteringstrength training skill test
researchProduct

Reduced Order Models for Pricing American Options under Stochastic Volatility and Jump-diffusion Models

2016

American options can be priced by solving linear complementary problems (LCPs) with parabolic partial(-integro) differential operators under stochastic volatility and jump-diffusion models like Heston, Merton, and Bates models. These operators are discretized using finite difference methods leading to a so-called full order model (FOM). Here reduced order models (ROMs) are derived employing proper orthogonal decomposition (POD) and non negative matrix factorization (NNMF) in order to make pricing much faster within a given model parameter variation range. The numerical experiments demonstrate orders of magnitude faster pricing with ROMs. peerReviewed

ta113Mathematical optimizationStochastic volatilityDiscretizationComputer scienceJump diffusionFinite difference method010103 numerical & computational mathematics01 natural sciencesNon-negative matrix factorization010101 applied mathematicsValuation of optionslinear complementary problemRange (statistics)General Earth and Planetary SciencesApplied mathematicsreduced order modelFinite difference methods for option pricing0101 mathematicsAmerican optionoption pricingGeneral Environmental ScienceProcedia Computer Science
researchProduct