Search results for "nonlinear optics"

showing 10 items of 482 documents

Emergence of long-range phase coherence in nonlocal nonlinear media

2017

The emergence of long range phase coherence among random nonlinear waves is a fascinating effect that characterizes many fundamental phenomena. For instance, the condensation of classical waves [1,2] is an important example of self-organization process that generates lot of interest as a classical analogue of quantum Bose-Einstein condensation. Wave condensation is known to be characterized by the emergence of long-range order and phase-coherence, in the sense that the correlation function of the wave amplitude does not decay at infinity. This property of long range phase coherence is fundamental, for instance for the manifestation of superfluid behaviors, or the generation of Bogoliubov so…

Condensed Matter::Quantum GasesPhysicsCoherence timeCondensed Matter::Otherturbulencenonlinear opticsDegree of coherence01 natural sciencesNO010305 fluids & plasmasSuperfluidityNonlinear systemClassical mechanicsAmplitudeCoherence theoryQuantum mechanics0103 physical sciencesturbulence nonlinear optics010306 general physicsQuantumCoherence (physics)
researchProduct

Observation of classical optical wave condensation

2010

We demonstrate the nonlinear condensation of classical optical waves. The condensation is observed directly, as a function of nonlinearity and wave kinetic energy, in a self-defocusing photorefractive crystal.

Condensed Matter::Quantum GasesPhysicsCondensed Matter::OtherPhysics::OpticsNonlinear opticsKinetic energyPhysical opticsMolecular physicsCoherence lengthFour-wave mixingCross-polarized wave generationQuantum mechanicsNonlinear Sciences::Pattern Formation and SolitonsRefractive indexCoherence (physics)Frontiers in Optics 2010/Laser Science XXVI
researchProduct

Subdiffractive solitons in bose-einstein condensates

2005

We predict the disappearance of diffraction (the increase of the mass) of Bose-Einstein condensates in counter-moving periodic potentials. We demonstrate subdiffractive solitons (stable droplets of the condensate) in the vicinity of this zero diffraction point.

Condensed Matter::Quantum GasesPhysicsDiffractionCondensed matter physicsCondensed Matter::OtherScatteringlawPhysics::OpticsNonlinear opticsDispersion (water waves)Bose–Einstein condensatelaw.invention
researchProduct

Slow-light soliton dynamics with relaxation

2007

We solved the problem of soliton dynamics in the presence of relaxation. We demonstrate that the spontaneous emission of atoms is strongly suppressed due to nonlinearity. The spatial shape of the soliton is well preserved.

Condensed Matter::Quantum GasesPhysicsNonlinear opticsSlow lightMolecular physicsNonlinear systemNonlinear Sciences::Exactly Solvable and Integrable SystemsQuantum mechanicsAtom opticsRelaxation (physics)Spontaneous emissionStimulated emissionSolitonNonlinear Sciences::Pattern Formation and Solitons2007 Quantum Electronics and Laser Science Conference
researchProduct

Towards nonlinear optics with cold Rydberg atoms inside a hollow core fiber

2015

We present an experimental setup for studying strongly nonlinear light-matter interactions using cold atoms inside a hollow core fiber. A Rydberg EIT process can potentially be used to generate strong and tunable effective photon-photon interactions.

Condensed Matter::Quantum GasesPhysicsOptical fiberbusiness.industryPhysics::OpticsNonlinear opticslaw.inventionsymbols.namesakelawRydberg atomAtom opticsRydberg formulasymbolsPhysics::Atomic PhysicsFiberCrystal opticsAtomic physicsPhotonicsbusinessCLEO: 2015
researchProduct

Bremsstrahlung from a repulsive potential: attosecond pulse generation

2008

The collision of an electron against a repulsive potential in the presence of a laser field is investigated. It is found that a sufficiently strong laser field forces the electron to remain in the neighbourhood of the repulsive potential causing bremsstrahlung. By appropriately filtering the emitted signal, an electron in the presence of a repulsive potential is capable of generating attosecond pulses.

Condensed Matter::Quantum GasesPhysicsSettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciField (physics)Condensed matter physicsBremsstrahlungAttosecondBremsstrahlungPhysics::OpticsNonlinear opticsElectronCondensed Matter PhysicsLaserSettore FIS/03 - Fisica Della MateriaAtomic and Molecular Physics and Opticslaw.inventionParticle accelerationgenerazione di attosecondilawPhysics::Atomic PhysicsAtomic physicsUltrashort pulseJournal of Physics B: Atomic, Molecular and Optical Physics
researchProduct

W-shaped, bright and kink solitons in the quadratic-cubic nonlinear Schrödinger equation with time and space modulated nonlinearities and potentials

2017

An extended non-linear Schrodinger equation (NLSE) combining quadratic and cubic Non-linearities, which appears as an approximate model of a relatively dense quasi-one-dimensional Bose–Einstein con...

Condensed Matter::Quantum GasesPhysicsSpacetimeNon linearityNonlinear optics01 natural sciencesAtomic and Molecular Physics and OpticsSchrödinger equation010309 opticssymbols.namesakeClassical mechanicsQuadratic equation0103 physical sciencessymbols010306 general physicsNonlinear Sciences::Pattern Formation and SolitonsNonlinear Schrödinger equationJournal of Modern Optics
researchProduct

Observation of the condensation of classical waves

2010

We report a theoretical, numerical and experimental study of condensation of classical optical waves. The condensation of observed directly, as a function of nonlinearity and wave kinetic energy, in a self-defocusing photorefractive crystal.

Condensed Matter::Quantum GasesPhysics[PHYS]Physics [physics]Computer simulationCondensed Matter::OtherWave propagationPhysics::OpticsNonlinear opticsKinetic energy01 natural scienceslaw.invention[PHYS] Physics [physics]010309 opticsNonlinear systemsymbols.namesakeFourier transformlawQuantum electrodynamicsQuantum mechanics0103 physical sciencessymbols010306 general physicsNonlinear Sciences::Pattern Formation and SolitonsBose–Einstein condensateCoherence (physics)
researchProduct

Collective behavior ofMbosonic modes interacting with a single two-level atom

1988

The Hamiltonian describing, without the rotating-wave approximation (RWA), the linear interaction between M bosonic modes with an Einstein spectrum and a single two-level atom is exactly and canonically transformed introducing M suitable collective independent field modes, in such a way that only one among them is coupled to the atom. Some physical consequences of this fact are analyzed and, in particular, the existence of radiation-trapping phenomena together with the possibility of atomic absorption suppression is established. The applicability of the RWA to this system is discussed and the importance of the effective-field statistics for the time evolution of the system is pointed out.

Condensed Matter::Quantum GasesPhysicssymbols.namesakeCollective behaviorQuantum mechanicsAtomsymbolsTime evolutionNonlinear opticsEinsteinHamiltonian (quantum mechanics)Physical Review A
researchProduct

Supersolid Behavior of Light

2008

We will show how light can form stationary structures on dielectric periodic media such that their dynamics present simultaneous features of spatial long range order and superfluidity. This phenomenon is normally referred to as supersolidity.

Condensed Matter::Quantum GasesSuperfluidityPhysicsSupersolidCondensed matter physicsCondensed Matter::OtherNonlinear opticsSelf-focusingDielectricPhotonic crystalFrontiers in Optics 2008/Laser Science XXIV/Plasmonics and Metamaterials/Optical Fabrication and Testing
researchProduct