Search results for "nonlinear optics"

showing 10 items of 482 documents

Wave turbulence in integrable systems: nonlinear propagation of incoherent optical waves in single-mode fibers.

2011

International audience; We study theoretically, numerically and experimentally the nonlinear propagation of partially incoherent optical waves in single mode optical fibers. We revisit the traditional treatment of the wave turbulence theory to provide a statistical kinetic description of the integrable scalar NLS equation. In spite of the formal reversibility and of the integrability of the NLS equation, the weakly nonlinear dynamics reveals the existence of an irreversible evolution toward a statistically stationary state. The evolution of the power spectrum of the field is characterized by the rapid growth of spectral tails that exhibit damped oscillations, until the whole spectrum ultima…

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]Physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Integrable systembusiness.industryWave turbulenceSingle-mode optical fiberSpectral densityNonlinear optics01 natural sciencesAtomic and Molecular Physics and Optics010309 opticsNonlinear systemOpticsClassical mechanics0103 physical sciences010306 general physicsbusinessStationary stateCoherence (physics)Optics express
researchProduct

Pulsating Dissipative Light Bullets

2009

Finding domains of existence for (3+1)D spatio-temporal dissipative solitons, also called “dissipative light bullets”, by direct numerical solving of a cubic-quintic Ginzburg-Landau equation (CGLE) is a lengthy procedure [1,2]. Variational approaches pave the way for quicker soliton solution mapping, as long as tractable trial functions remain suitable approximations for exact solutions [3,4].

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]Physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Nonlinear optics01 natural sciences010305 fluids & plasmassymbols.namesakeDissipative solitonClassical mechanics0103 physical sciencessymbolsDissipative systemGinzburg–Landau theorySoliton010306 general physicsDispersion (water waves)Nonlinear Sciences::Pattern Formation and SolitonsGaussian processBifurcationComputingMilieux_MISCELLANEOUS
researchProduct

Peregrine soliton in optical fiber-based systems

2011

International audience; We report the first observation in optics of the Peregrine soliton, a novel class of nonlinear localized structure. Two experimental configurations are explored and the impact of non-ideal initial conditions is discussed.

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]Physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Optical fiberbusiness.industryNonlinear optics01 natural sciencesComputational physicslaw.invention010309 opticsNonlinear systemOpticsModulationlaw0103 physical sciencesPeregrine soliton010306 general physicsbusiness
researchProduct

Interactions and transformations of dissipative optical bullets

2007

Nonlinear dissipation provides distinctive dynamical properties to optical bullets. According to the system parameters, the dynamical properties of single bullets range from fully stable to pulsating and instable bullets. We are here interested in the following stage, namely the interaction between several optical bullets.

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]Physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Physics::Medical PhysicsNonlinear opticsAstrophysics::Cosmology and Extragalactic Astrophysics02 engineering and technology021001 nanoscience & nanotechnologyNonlinear dissipation01 natural sciences010309 opticsPhysics::Popular PhysicsClassical mechanics0103 physical sciencesSystem parametersDissipative system0210 nano-technologyNonlinear Sciences::Pattern Formation and SolitonsComputingMilieux_MISCELLANEOUS
researchProduct

Light-by-light polarization control and stabilization in optical fibers for telecommunication applications

2012

With the advent of future transparent ultra high-bit rate capacity transmission networks, encoding the data would necessary involve all the physical parameters of a light beam, including multi-level in intensity, phase, polarization and even propagation modes. These complex optical fields will then naturally suffer from strong impairments imposed by linear and nonlinear propagation effects. Hence, developing new all-optical tools able to control or regenerate any properties of light has become of a crucial interest. In this work, we experimentally report that it is possible, using a unique segment of optical fiber, to all-optically manipulate and regenerate both the state of polarization (S…

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]Physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Polarization rotatorOptical fiberbusiness.industryOptical communicationSingle-mode optical fiberNonlinear opticsPolarization-maintaining optical fiberlaw.inventionOpticsPolarization mode dispersionlawTelecommunicationsbusinessPhotonic-crystal fiberSPIE Proceedings
researchProduct

Near-field control of optical bistability in a nanocavity

2009

Micro- and nanocavities allow for strong light confinement in very small volume [1]. They give opportunities for new experiments such as cavity quantum electrodynamics, waveguiding, light slowing or trapping…[2] The increase of the electromagnetic (EM) field in the cavity enhances the interaction between light and matter, resulting in the possible observation of nonlinear effects [3]. Several studies have recently been published on the observation and characterisation of nonlinear silicon cavities [4]. As a step further, we propose and demonstrate the feasibility of an innovative way to mechanically control the bistable operating regime of a nanovavity. Using a near-field tip, we switch the…

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]SiliconField (physics)BistabilityNanophotonicschemistry.chemical_elementPhysics::OpticsNear and far field02 engineering and technology01 natural sciencesOptical switchOptical bistabilitylaw.invention010309 opticsOpticslaw0103 physical sciences010306 general physicsComputer Science::DatabasesComputingMilieux_MISCELLANEOUSPhysics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryQuantitative Biology::Molecular NetworksCavity quantum electrodynamicsNonlinear opticsCondensed Matter Physics021001 nanoscience & nanotechnologyElectronic Optical and Magnetic MaterialsNonlinear systemchemistryOptical cavityOptoelectronicsPhotonics0210 nano-technologybusiness
researchProduct

On the possibility of observing bound soliton pairs in a wave-breaking-free mode-locked fiber laser

2007

On the basis of numerical simulations, we explain the formation of the stable bound soliton pairs that were experimentally reported in a high-power mode-locked ytterbium fiber laser [Opt. Express 14, 6075 (2006)], in a regime where wave-breaking-free operation is expected. A fully vectorial model allows one to rigorously reproduce the nonmonotonic nature for the nonlinear polarization effect that generally limits the power scalability of a single-pulse self-similar regime. Simulations show that a self-similar regime is not fully obtained, although positive linear chirps and parabolic spectra are always reported. As a consequence, nonvanishing pulse tails allow distant stable binding of high…

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]YtterbiumPhysics::Opticschemistry.chemical_element01 natural scienceslaw.invention010309 opticsOpticslawFiber laser0103 physical sciences010306 general physicsComputingMilieux_MISCELLANEOUSPhysics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Computer simulationbusiness.industryNonlinear opticsLaserAtomic and Molecular Physics and OpticsPulse (physics)chemistryMode-lockingSolitonbusinessOptics Letters
researchProduct

Quasi-soliton spatial autoguidé en milieu non lineaire quadratique

2021

International audience; Nous démontrons ici des phénomènes d'autoguidage optique existant dans les milieux à non-linéarités quadratiques. En plus de la formation puis disparition d'un phénomène auto confiné, nous observons des effets de commutation ultrarapide et de démultiplication spatiale, ainsi qu'une restructuration temporelle suivie d'élargissements spectraux.

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Compression spatiale[PHYS.PHYS.PHYS-GEN-PH] Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]pulsebreakingnonlinear optics[PHYS.PHYS.PHYS-ATM-PH]Physics [physics]/Physics [physics]/Atomic and Molecular Clusters [physics.atm-clus]Elargissement spectral[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]optical solitons[NLIN.NLIN-PS]Nonlinear Sciences [physics]/Pattern Formation and Solitons [nlin.PS]Quasi-Soliton[NLIN.NLIN-PS] Nonlinear Sciences [physics]/Pattern Formation and Solitons [nlin.PS]nonlinear optics; optical solitons; quadratic media[PHYS.PHYS.PHYS-ATM-PH] Physics [physics]/Physics [physics]/Atomic and Molecular Clusters [physics.atm-clus]quadratic mediapulse breaking
researchProduct

All-fibered high-quality 28-GHz to 112 GHz pulse sources based on nonlinear compression of optical temporal besselons

2021

The generation of high quality pulse trains at repetition rates of several tens of GHz remains a crucial step for optical telecommunications, optical sampling or component testing applications. Unfortunately, the current bandwidth limitations of optoelectronic devices do not allow the direct generation of well-defined optical pulse trains with low duty cycles. An attractive solution is based on a direct temporal phase modulation that is then converted into an intensity modulation thanks to a dispersive element that imprints a spectral quadratic phase. Picosecond pulses at repetition rates of several tens of GHz have been successfully demonstrated [1] . However, this approach suffers from a …

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Materials scienceExtinction ratiobusiness.industryBandwidth (signal processing)Nonlinear opticsPulse (physics)Quality (physics)OpticsPicosecondbusinessIntensity modulationPhase modulationComputingMilieux_MISCELLANEOUS
researchProduct

New developments in the study of optical parabolic pulses in normally dispersive fibers

2011

International audience; We report two recent studies dealing with the evolution of parabolic pulses in normally dispersive fibers. On the one hand, the nonlinear reshaping from a Gaussian intensity profile towards the asymptotic parabolic shape is experimentally investigated in a Raman amplifier. On the other hand, the significant impact of the fourth order dispersion on a passive propagation is theoretically discussed: we numerically demonstrate flat-top, coherent supercontinuum generation in an all-normal dispersion-flattened photonic crystal fiber. This shape is associated to a strong reshaping of the temporal profile what becomes triangular.

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Materials scienceRaman amplification[ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryGaussianNonlinear opticsPhysics::Optics01 natural sciencesSupercontinuum010309 opticssymbols.namesakeOptics0103 physical sciencesDispersion (optics)symbolsStimulated emission010306 general physicsbusinessPhotonic-crystal fiberPhotonic crystal
researchProduct