Search results for "nucl-th"
showing 10 items of 1223 documents
Reducing the Schottky barrier height at the MoSe2/Mo(110) interface in thin-film solar cells: Insights from first-principles calculations
2016
Abstract We report on first-principles calculations of the properties of the MoSe2/Mo(110) interface. Due to mismatch between the lattice parameters of the two structures, different patterns can form at the interface. We have studied the formation energy and the band alignment of six patterns for the MoSe2 (0001)/Mo(110) interface and one pattern for the MoSe2 (11 2 0)/Mo(110) interface. The MoSe2 (11 2 0)/Mo(110) interface is more stable than the MoSe 2 (0001)/Mo(110) interface and in contrast to MoSe2 (0001)/Mo(110), no Schottky barrier forms at MoSe2 (11 2 0)/Mo(110). Doping with Na modifies the band alignment at the interfaces. The Schottky barrier height decreases, provided that a Na a…
$^{78}$Ni revealed as a doubly magic stronghold against nuclear deformation
2019
Nuclear magic numbers, which emerge from the strong nuclear force based on quantum chromodynamics, correspond to fully occupied energy shells of protons, or neutrons inside atomic nuclei. Doubly magic nuclei, with magic numbers for both protons and neutrons, are spherical and extremely rare across the nuclear landscape. While the sequence of magic numbers is well established for stable nuclei, evidence reveals modifications for nuclei with a large proton-to-neutron asymmetry. Here, we provide the first spectroscopic study of the doubly magic nucleus $^{78}$Ni, fourteen neutrons beyond the last stable nickel isotope. We provide direct evidence for its doubly magic nature, which is also predi…
International workshop on next generation gamma-ray source
2022
Journal of physics / G 49(1), 010502 (2022). doi:10.1088/1361-6471/ac2827
No-core configuration-interaction model for the isospin- and angular-momentum-projected states
2016
[Background] Single-reference density functional theory is very successful in reproducing bulk nuclear properties like binding energies, radii, or quadrupole moments throughout the entire periodic table. Its extension to the multi-reference level allows for restoring symmetries and, in turn, for calculating transition rates. [Purpose] We propose a new no-core-configuration-interaction (NCCI) model treating properly isospin and rotational symmetries. The model is applicable to any nucleus irrespective of its mass and neutron- and proton-number parity. It properly includes polarization effects caused by an interplay between the long- and short-range forces acting in the atomic nucleus. [Metho…
Solution of the Skyrme-Hartree–Fock–Bogolyubovequations in the Cartesian deformed harmonic-oscillator basis. (VIII) hfodd (v2.73y): A new version of …
2017
We describe the new version (v2.73y) of the code HFODD which solves the nuclear Skyrme Hartree-Fock or Skyrme Hartree-Fock-Bogolyubov problem by using the Cartesian deformed harmonic-oscillator basis. In the new version, we have implemented the following new features: (i) full proton-neutron mixing in the particle-hole channel for Skyrme functionals, (ii) the Gogny force in both particle-hole and particle-particle channels, (iii) linear multi-constraint method at finite temperature, (iv) fission toolkit including the constraint on the number of particles in the neck between two fragments, calculation of the interaction energy between fragments, and calculation of the nuclear and Coulomb ene…
Thouless-Valatin Rotational Moment of Inertia from the Linear Response Theory
2017
Spontaneous breaking of continuous symmetries of a nuclear many-body system results in appearance of zero-energy restoration modes. Such modes introduce a non-physical contributions to the physical excitations called spurious Nambu-Goldstone modes. Since they represent a special case of collective motion, they are sources of important information about the Thouless-Valatin inertia. The main purpose of this work is to study the Thouless-Valatin rotational moment of inertia as extracted from the Nambu-Goldstone restoration mode that results from the zero-frequency response to the total angular momentum operator. We examine the role and effects of the pairing correlations on the rotational cha…
GW190814: Spin and equation of state of a neutron star companion
2020
The recent discovery by LIGO/Virgo of a merging binary having a $\sim 23 M_\odot$ black hole and a $\sim 2.6 M_\odot$ compact companion has triggered a debate regarding the nature of the secondary, which falls into the so-called mass gap. Here we explore some consequences of the assumption that the secondary was a neutron star (NS). We show with concrete examples of heretofore viable equations of state (EOSs) that rapid uniform rotation may neither be necessary for some EOSs nor sufficient for others to explain the presence of a NS. Absolute upper limits for the maximum mass of a spherical NS derived from GW170817 already suggest that this unknown compact companion might be a slowly or even…
Does the Sun Shine byppor CNO Fusion Reactions?
2002
We show that solar neutrino experiments set an upper limit of 7.8% (7.3% including the recent KamLAND measurements) to the fraction of energy that the Sun produces via the CNO fusion cycle, which is an order of magnitude improvement upon the previous limit. New experiments are required to detect CNO neutrinos corresponding to the 1.5% of the solar luminosity that the standard solar model predicts is generated by the CNO cycle.
Effect of three-body forces on response functions in infinite neutron matter
2015
International audience; We study the impact of three-body forces on the response functions of cold neutron matter. These response functions are determined in the random phase approximation (RPA) from a residual interaction expressed in terms of Landau parameters. Special attention is paid to the non-central part, including all terms allowed by the relevant symmetries. Using Landau parameters derived from realistic nuclear two- and three-body forces grounded in chiral effective field theory, we find that the three-body term has a strong impact on the excited states of the system and in the static and long-wavelength limit of the response functions for which a new exact formula is established.
Spectral function for overoccupied gluodynamics from real-time lattice simulations
2018
We study the spectral properties of a highly occupied non-Abelian non-equilibrium plasma appearing ubiquitously in weak coupling descriptions of QCD matter. The spectral function of this far-from-equilibrium plasma is measured by employing linear response theory in classical-statistical real-time lattice Yang-Mills simulations. We establish the existence of transversely and longitudinally polarized quasiparticles and obtain their dispersion relations, effective mass, plasmon frequency, damping rate and further structures in the spectral and statistical functions. Our new method can be interpreted as a non-perturbative generalization of hard thermal loop (HTL) effective theory. We see indica…