Search results for "nucl-th"

showing 10 items of 1223 documents

Reducing the Schottky barrier height at the MoSe2/Mo(110) interface in thin-film solar cells: Insights from first-principles calculations

2016

Abstract We report on first-principles calculations of the properties of the MoSe2/Mo(110) interface. Due to mismatch between the lattice parameters of the two structures, different patterns can form at the interface. We have studied the formation energy and the band alignment of six patterns for the MoSe2 (0001)/Mo(110) interface and one pattern for the MoSe2 (11 2 0)/Mo(110) interface. The MoSe2 (11 2 0)/Mo(110) interface is more stable than the MoSe 2 (0001)/Mo(110) interface and in contrast to MoSe2 (0001)/Mo(110), no Schottky barrier forms at MoSe2 (11 2 0)/Mo(110). Doping with Na modifies the band alignment at the interfaces. The Schottky barrier height decreases, provided that a Na a…

010302 applied physicsMaterials science[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]Schottky barriercu(InDopingMetals and Alloys02 engineering and technologySurfaces and InterfacesInterface[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]021001 nanoscience & nanotechnology01 natural sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCrystallographyGa)Se 2MoSe2/Mo(110)Lattice (order)0103 physical sciencesMaterials ChemistryThin film solar cellThin-film solar cell0210 nano-technologySchottky barrier
researchProduct

$^{78}$Ni revealed as a doubly magic stronghold against nuclear deformation

2019

Nuclear magic numbers, which emerge from the strong nuclear force based on quantum chromodynamics, correspond to fully occupied energy shells of protons, or neutrons inside atomic nuclei. Doubly magic nuclei, with magic numbers for both protons and neutrons, are spherical and extremely rare across the nuclear landscape. While the sequence of magic numbers is well established for stable nuclei, evidence reveals modifications for nuclei with a large proton-to-neutron asymmetry. Here, we provide the first spectroscopic study of the doubly magic nucleus $^{78}$Ni, fourteen neutrons beyond the last stable nickel isotope. We provide direct evidence for its doubly magic nature, which is also predi…

1000ProtonNuclear Theorymedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaStrong interactionNuclear TheoryFOS: Physical sciences01 natural sciencesAsymmetryNuclear Theory (nucl-th)Magic number (programming)0103 physical sciencesEffective field theoryPhysics::Atomic and Molecular ClustersNeutronNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentNuclear Experimentmedia_commonPhysics[PHYS]Physics [physics]Multidisciplinary010308 nuclear & particles physicsMagic (programming)Atomic nucleusAtomic physics
researchProduct

International workshop on next generation gamma-ray source

2022

Journal of physics / G 49(1), 010502 (2022). doi:10.1088/1361-6471/ac2827

Accelerator Physics (physics.acc-ph)Nuclear and High Energy Physics[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]Nuclear Theorynucleon: structurepi: photoproduction[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]conference summarynuclear astrophysicsFOS: Physical scienceslow-energy QCD[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]530bremsstrahlung01 natural scienceselectron: acceleratorNuclear Theory (nucl-th)parity: violationnuclear physicsquantum chromodynamics0103 physical sciencesAgency (sociology)ddc:530gamma-rayApplied researchNuclear Experiment (nucl-ex)010306 general physicsphoton: beamNuclear Experimentactivity reportenergy: lowPhysicsastrophysics010308 nuclear & particles physicsInformation sharinglaserhadronic parity violationgamma raynuclear structureSystems engineeringPhysics - Accelerator PhysicsCompton scatteringJournal of Physics G: Nuclear and Particle Physics
researchProduct

No-core configuration-interaction model for the isospin- and angular-momentum-projected states

2016

[Background] Single-reference density functional theory is very successful in reproducing bulk nuclear properties like binding energies, radii, or quadrupole moments throughout the entire periodic table. Its extension to the multi-reference level allows for restoring symmetries and, in turn, for calculating transition rates. [Purpose] We propose a new no-core-configuration-interaction (NCCI) model treating properly isospin and rotational symmetries. The model is applicable to any nucleus irrespective of its mass and neutron- and proton-number parity. It properly includes polarization effects caused by an interplay between the long- and short-range forces acting in the atomic nucleus. [Metho…

Angular momentumNuclear TheoryNuclear TheoryFOS: Physical sciencesrotational symmetry7. Clean energy01 natural sciencesNuclear Theory (nucl-th)Quantum mechanics0103 physical sciencesNeutronno-core-configuration-interaction (NCCI) modelNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentPhysicsCoupling constantta114010308 nuclear & particles physicsNuclear shell modelParity (physics)Configuration interactionisospin symmetryQuantum electrodynamicsIsospinnucleiSlater determinantPhysical Review C
researchProduct

Solution of the Skyrme-Hartree–Fock–Bogolyubovequations in the Cartesian deformed harmonic-oscillator basis. (VIII) hfodd (v2.73y): A new version of …

2017

We describe the new version (v2.73y) of the code HFODD which solves the nuclear Skyrme Hartree-Fock or Skyrme Hartree-Fock-Bogolyubov problem by using the Cartesian deformed harmonic-oscillator basis. In the new version, we have implemented the following new features: (i) full proton-neutron mixing in the particle-hole channel for Skyrme functionals, (ii) the Gogny force in both particle-hole and particle-particle channels, (iii) linear multi-constraint method at finite temperature, (iv) fission toolkit including the constraint on the number of particles in the neck between two fragments, calculation of the interaction energy between fragments, and calculation of the nuclear and Coulomb ene…

Angular momentumNuclear Theory[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]SYMMETRYNuclear TheoryHartree–Fock methodGeneral Physics and AstronomyFOS: Physical sciencesGogny forceSkyrme interactionNuclear density functional theorySelf-consistent mean-field01 natural sciences114 Physical sciencesNuclear Theory (nucl-th)Energy density functional theorySYSTEMSQuantum mechanics0103 physical sciences010306 general physicsHarmonic oscillator[ PHYS.NUCL ] Physics [physics]/Nuclear Theory [nucl-th]PhysicsHartree–Fock–Bogolyubovta114010308 nuclear & particles physicsAugmented Lagrangian methodInteraction energyAngular-momentum projection113 Computer and information sciencesHardware and ArchitecturePairingIsospintheoretical nuclear physicsSelf-consistent mean fieldHartree-Fock-BogolyubovPairing correlations
researchProduct

Thouless-Valatin Rotational Moment of Inertia from the Linear Response Theory

2017

Spontaneous breaking of continuous symmetries of a nuclear many-body system results in appearance of zero-energy restoration modes. Such modes introduce a non-physical contributions to the physical excitations called spurious Nambu-Goldstone modes. Since they represent a special case of collective motion, they are sources of important information about the Thouless-Valatin inertia. The main purpose of this work is to study the Thouless-Valatin rotational moment of inertia as extracted from the Nambu-Goldstone restoration mode that results from the zero-frequency response to the total angular momentum operator. We examine the role and effects of the pairing correlations on the rotational cha…

Angular momentumNuclear Theorymedia_common.quotation_subjectNuclear TheoryFOS: Physical sciencesRotary inertiaInertia114 Physical sciences01 natural sciencesbinding energy and massesMoment of inertia factorNuclear Theory (nucl-th)symbols.namesake0103 physical sciences010306 general physicsRotational partition functionEuler's equationsEQUATIONSmedia_commonPhysicsta114nuclear density functional theory010308 nuclear & particles physicstiheysfunktionaaliteoriacollective modelsMoment of inertianuclear structure and decayssuprajuoksevuusRotational energyClassical mechanicssuperfluiditysymbolsydinfysiikka
researchProduct

GW190814: Spin and equation of state of a neutron star companion

2020

The recent discovery by LIGO/Virgo of a merging binary having a $\sim 23 M_\odot$ black hole and a $\sim 2.6 M_\odot$ compact companion has triggered a debate regarding the nature of the secondary, which falls into the so-called mass gap. Here we explore some consequences of the assumption that the secondary was a neutron star (NS). We show with concrete examples of heretofore viable equations of state (EOSs) that rapid uniform rotation may neither be necessary for some EOSs nor sufficient for others to explain the presence of a NS. Absolute upper limits for the maximum mass of a spherical NS derived from GW170817 already suggest that this unknown compact companion might be a slowly or even…

AstrofísicaHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsEquation of stateNuclear TheoryFOS: Physical sciencesBinary numberAstronomy and AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics01 natural sciencesUniform rotationLIGOGeneral Relativity and Quantum Cosmology3. Good healthNuclear Theory (nucl-th)Black holeNeutron starSpace and Planetary Science0103 physical sciences010306 general physicsAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsMass gapSpin-½
researchProduct

Does the Sun Shine byppor CNO Fusion Reactions?

2002

We show that solar neutrino experiments set an upper limit of 7.8% (7.3% including the recent KamLAND measurements) to the fraction of energy that the Sun produces via the CNO fusion cycle, which is an order of magnitude improvement upon the previous limit. New experiments are required to detect CNO neutrinos corresponding to the 1.5% of the solar luminosity that the standard solar model predicts is generated by the CNO cycle.

Astrophysics and AstronomyAstrofísica nuclearCNO cycleNuclear TheoryPhysics::Instrumentation and DetectorsSolar neutrinoSolar luminosityFOS: Physical sciencesGeneral Physics and AstronomyAstrophysicsAstrophysics7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentNuclear Theory (nucl-th)High Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsNuclear fusionNuclear Experiment (nucl-ex)010306 general physicsNeutrino oscillationNuclear ExperimentAstrophysics::Galaxy AstrophysicsPhysicsStandard solar modelReaccions nuclears010308 nuclear & particles physicsAstrophysics (astro-ph)FísicaHigh Energy Physics - PhenomenologyPhysics::Space PhysicsNuclear astrophysicsHigh Energy Physics::ExperimentNuclear reactionsNeutrinoOrder of magnitudePhysical Review Letters
researchProduct

Effect of three-body forces on response functions in infinite neutron matter

2015

International audience; We study the impact of three-body forces on the response functions of cold neutron matter. These response functions are determined in the random phase approximation (RPA) from a residual interaction expressed in terms of Landau parameters. Special attention is paid to the non-central part, including all terms allowed by the relevant symmetries. Using Landau parameters derived from realistic nuclear two- and three-body forces grounded in chiral effective field theory, we find that the three-body term has a strong impact on the excited states of the system and in the static and long-wavelength limit of the response functions for which a new exact formula is established.

Body forcePhysicsNuclear and High Energy Physics[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]Nuclear Theory010308 nuclear & particles physicsFOS: Physical sciencesFísicaResidual01 natural sciencesNuclear Theory (nucl-th)Classical mechanicsExcited state0103 physical sciencesHomogeneous spaceEffective field theoryNeutronLimit (mathematics)010306 general physicsRandom phase approximation
researchProduct

Spectral function for overoccupied gluodynamics from real-time lattice simulations

2018

We study the spectral properties of a highly occupied non-Abelian non-equilibrium plasma appearing ubiquitously in weak coupling descriptions of QCD matter. The spectral function of this far-from-equilibrium plasma is measured by employing linear response theory in classical-statistical real-time lattice Yang-Mills simulations. We establish the existence of transversely and longitudinally polarized quasiparticles and obtain their dispersion relations, effective mass, plasmon frequency, damping rate and further structures in the spectral and statistical functions. Our new method can be interpreted as a non-perturbative generalization of hard thermal loop (HTL) effective theory. We see indica…

CLASSICAL APPROXIMATIONNuclear Theorynucl-thquark-gluon plasmahep-latFOS: Physical sciencesHEAVY-ION COLLISIONShiukkasfysiikka114 Physical sciences01 natural sciencesNuclear Theory (nucl-th)High Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)Lattice (order)0103 physical sciencesquantum chromodynamicsQCD PLASMA INSTABILITIESStatistical physicsGauge theorynonperturbative effects in field theory010306 general physicsHARD THERMAL LOOPSParticle Physics - PhenomenologyPhysicsQuantum chromodynamicsta114010308 nuclear & particles physicsHigh Energy Physics - Lattice (hep-lat)kvarkki-gluoniplasmafinite temperature field theorylattice field theoryISOTROPIZATIONParticle Physics - Latticehep-ph16. Peace & justiceFIELD-THEORYGluonHigh Energy Physics - PhenomenologyNuclear Physics - TheoryQuark–gluon plasmaHIGH-TEMPERATUREGAUGE-THEORIESQuasiparticleSpectral functionkvanttikenttäteoriaStatistical correlationrelativistic heavy-ion collisions
researchProduct