Search results for "nucl-th"
showing 10 items of 1223 documents
Convergence of density-matrix expansions for nuclear interactions
2010
We extend density-matrix expansions in nuclei to higher orders in derivatives of densities and test their convergence properties. The expansions allow for converting the interaction energies characteristic to finite- and short-range nuclear effective forces into quasi-local density functionals. We also propose a new type of expansion that has excellent convergence properties when benchmarked against the binding energies obtained for the Gogny interaction.
New rotational levels in $^{186}$Re nucleus
2020
International audience; Excited levels of 186 Re have been studied using results of the single γ -ray spectra measurements following the thermal neutron capture reaction. Energies and intensities of more than 500 γ -transitions have been obtained with the high-resolution crystal diffraction spectrometer GAMS5 of ILL. Most of the obtained intense γ -transitions have been placed in the 186 Re level scheme. A number of new levels, as well as the depopulation for levels observed earlier in the 187 Re (p,d)186 Re reaction measurements have been proposed. Structure of 186 Re levels is interpreted in terms of two-quasiparticle plus rotor coupling model and compared with that of the neighbouring do…
Small-x, Diffraction and Vector Mesons
2015
This talk discusses recent progress in some topics relevant for deep inelastic scattering at small x. We discuss first differences and similarities between conventional collinear factorization and the dipole picture of deep inelastic scattering. Many of the recent theoretical advances at small x are related to taking calculations in the nonlinear saturation regime to next-to-leading order accuracy in the QCD coupling. On the experimental side significant recent progress has been made in exclusive and diffractive processes, in particular in ultraperipheral nucleus-nucleus collisions.
Diffractive vector meson production in ultraperipheral heavy ion collisions from the Color Glass Condensate
2014
We compute cross sections for incoherent and coherent diffractive J/$\Psi$ and $\Psi(2S)$ production in ultraperipheral heavy ion collisions. The dipole models used in these calculations are obtained by fitting the HERA deep inelastic scattering data and compared with available electron-proton diffraction measurements. We obtain a reasonably good description of the available ALICE data. We find that the normalization of the ultraperipheral cross section has large model dependence, but the rapidity dependence is more tightly constrained.
Bayesian inference of the fluctuating proton shape
2022
Using Bayesian inference, we determine probabilistic constraints on the parameters describing the fluctuating structure of protons at high energy. We employ the color glass condensate framework supplemented with a model for the spatial structure of the proton, along with experimental data from the ZEUS and H1 Collaborations on coherent and incoherent diffractive $\mathrm{J}/\psi$ production in e+p collisions at HERA. This data is found to constrain most model parameters well. This work sets the stage for future global analyses, including experimental data from e+p, p+p, and p+A collisions, to constrain the fluctuating structure of nucleons along with properties of the final state.
Binding energies and pairing gaps in semi-magic nuclei obtained using new regularized higher-order EDF generators
2016
We present results of the Hartree-Fock-Bogolyubov calculations performed using nuclear energy density functionals based on regularized functional generators at next-to-leading and next-to-next-to-leading order. We discuss properties of binding energies and pairing gaps determined in semi-magic spherical nuclei. The results are compared with benchmark calculations performed for the functional generator SLyMR0 and functional UNEDF0.
Forward rapidity isolated photon production in proton-nucleus collisions
2018
We calculate isolated photon production at forward rapidities in proton-nucleus collisions in the Color Glass Condensate framework. Our calculation uses dipole cross sections solved from the running coupling Balitsky-Kovchegov equation with an initial condition fit to deep inelastic scattering data and extended to nuclei with an optical Glauber procedure that introduces no additional parameters beyond the basic nuclear geometry. We present predictions for future forward RHIC and LHC measurements. The predictions are also compared to updated results for the nuclear modification factors for pion production, Drell-Yan dileptons and $J/\psi$ mesons in the same forward kinematics, consistently c…
Beam-normal single-spin asymmetry in elastic scattering of electrons from a spin-0 nucleus
2021
We study the beam-normal single-spin asymmetry (BNSSA) in high-energy elastic electron scattering from several spin-0 nuclei. Existing theoretical approaches work in the plane-wave formalism and predict the BNSSA to scale as $\ensuremath{\sim}A/Z$ with the atomic number $Z$ and nuclear mass number $A$. While this prediction holds for light and intermediate nuclei, a striking disagreement in both the sign and the magnitude of BNSSA was observed by the PREX collaboration for $^{208}\mathrm{Pb}$, coined the ``PREX puzzle.'' To shed light on this disagreement, we go beyond the plane-wave approach which neglects Coulomb distortions known to be significant for heavy nuclei. We explicitly investig…
Compton scattering by a pion and off-shell effects
1994
We consider Compton scattering by a pion in the framework of chiral perturbation theory. We investigate off--shell effects in the s-- and u--channel pole diagrams. For that purpose we perform a field transformation which, in comparison with the standard Gasser and Leutwyler Lagrangian, generates additional terms at order $p^4$ proportional to the lowest--order equation of motion. As a result of the equivalence theorem the two Lagrangians predict the same Compton scattering S--matrix even though they generate different off--shell form factors. We conclude that off--shell effects are not only model--dependent but also representation--dependent.
Study of Cluster Structures in Nuclei through the Ratio Method. A Tribute to Mahir Hussein
2020
For one-neutron halo nuclei, the cross sections for elastic scattering and breakup at intermediate energy exhibit similar angular dependences. The Recoil Excitation and Breakup (REB) model of reactions elegantly explains this feature. It also leads to the idea of a new reaction observable to study the structure of loosely-bound nuclear systems: the Ratio. This observable consists of the ratio of angular distributions for different reaction channels, viz. elastic scattering and breakup, which cancels most of the dependence on the reaction mechanism; in particular it is insensitive to the choice of optical potentials that simulate the projectile-target interaction. This new observable is very…