Search results for "nucleation"
showing 10 items of 364 documents
Nucleation and Growth of CaCO3 Mediated by the Egg-White Protein Ovalbumin: A Time-Resolved in situ Study Using Small-Angle Neutron Scattering
2008
Mineralization of calcium carbonate in aqueous solutions starting from its initiation was studied by time-resolved small-angle neutron scattering (SANS). SANS revealed that homogeneous crystallization of CaCO 3 involves an initial formation of thin plate-shaped nuclei which subsequently reassemble to 3-dimensional particles, first of fractal and finally of compact structure. The presence of the egg-white protein ovalbumin leads to a different progression of mineralization through several stages; the first step represents amorphous CaCO 3, whereas the other phases are crystalline. The formation and dissolution of the amorphous phase is accompanied by Ca (2+)-mediated unfolding and cross-link…
Disentangling the Amyloid Pathways: A Mechanistic Approach to Etiology
2020
Amyloids are fibrillar protein aggregates associated with diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), type II diabetes and Creutzfeldt–Jakob disease. The process of amyloid polymerization involves three pathological protein transformations; from natively folded conformation to the cross-β conformation, from biophysically soluble to insoluble, and from biologically functional to non-functional. While amyloids share a similar cross-β conformation, the biophysical transformation can either take place spontaneously via a homogeneous nucleation mechanism (HON) or catalytically on an exogenous surface via a heterogeneous nucleation mechanism (HEN). Here, we postulate that…
Polymeric scaffolds prepared via Thermally Induced Phase Separation (TIPS): Tuning of structure and morphology
2007
Scaffolds suitable for tissue engineering applications were prepared by Thermally Induced Phase Separation (TIPS) starting from a ternary solution PLLA/dioxane/water. The experimental protocol consisted of three consecutive steps, a first quench from the homogeneous solution to an appropriate demixing temperature (within the metastable region), a holding stage for a given residence time and a final quench from the demixing temperature to a low temperature (within the unstable region). A large variety of morphologies, in terms of average pore size and interconnection, were obtained upon modifying the demixing time and temperature, owing to the interplay of nucleation and growth processes dur…
The effectiveness of decompression as initial treatment for jaw cysts : a 10-year retrospective study
2018
Background Decompression is an approved alternative to cystectomy in the treatment of jaw cysts. This study aimed to evaluate its effectiveness as an initial procedure, as well as factors with potential to influence outcome. Material and Methods The frequency of decompression was analysed, whether completed in one session or followed by enucleation at the Division of Oral Surgery and Orthodontics, Department of Dental Medicine and Oral Health, Medical University of Graz, from 2005 to 2015. Further analysis focussed on factors potentially influencing outcome: cyst location, histopathology, means of preserving the cyst opening, cyst size, patient age. Results In all, 53 patients with 55 jaw c…
Do the contact angle and line tension of surface-attached droplets depend on the radius of curvature?
2018
Results from Monte Carlo simulations of wall-attached droplets in the three-dimensional Ising lattice gas model and in a symmetric binary Lennard-Jones fluid, confined by antisymmetric walls, are analyzed, with the aim to estimate the dependence of the contact angle $(\Theta)$ on the droplet radius $(R)$ of curvature. Sphere-cap shape of the wall-attached droplets is assumed throughout. An approach, based purely on "thermodynamic" observables, e.g., chemical potential, excess density due to the droplet, etc., is used, to avoid ambiguities in the decision which particles belong (or do not belong, respectively) to the droplet. It is found that the results are compatible with a variation $[\Th…
Equilibrium fluid-crystal interfacial free energy of bcc-crystallizing aqueous suspensions of polydisperse charged spheres
2015
The interfacial free energy is a central quantity in crystallization from the meta-stable melt. In suspensions of charged colloidal spheres, nucleation and growth kinetics can be accurately measured from optical experiments. In previous work, from this data effective non-equilibrium values for the interfacial free energy between the emerging bcc-nuclei and the adjacent melt in dependence on the chemical potential difference between melt phase and crystal phase were derived using classical nucleation theory. A strictly linear increase of the interfacial free energy was observed as a function of increased meta-stability. Here, we further analyze this data for five aqueous suspensions of charg…
Mechanism for ultrafast electric-field driven skyrmion nucleation
2021
We show how a Dzyaloshinskii-Moriya interaction can be generated in an ultrathin metal film from a femtosecond pulse in electric field. This interaction does not require structural inversion-symmetry breaking, and its amplitude can be tuned depending on the amplitude of the field. We perform first-principles calculations to estimate the strength of the field-induced magnetoelectric coupling for ferromagnetic Fe, Co, and Ni, and antiferromagnetic Mn, as well as FePt and MnPt alloys. Last, using atomistic simulations, we demonstrate how an isolated antiferromagnetic skyrmion can be coherently nucleated from the collinear background by an ultrashort pulse in electric field on a hundred-femtose…
Giant magnetic anisotropy energy and coercivity in Fe island and atomic wire on W(110)
2012
We have directly investigated the giant magnetic anisotropy energy and coercivity of monolayer (ML) Fe islands and stripes on flat and stepped W(110) surfaces using x-ray magnetic circular dichroism. Both for islands and stripes, the magnetic anisotropy energy is $\ensuremath{\sim}$1.0 meV/atom, independent of the coverage below 0.5 ML. On the contrary, the coercive field of the islands rapidly drops from 4.3 T at 0.25 ML to 1.9 T at 0.50 ML, while that of the stripes moderately degrades from 3.5 T at 0.15 ML ($\ensuremath{\sim}$3 atom rows) to 3.0 T at 0.50 ML. We explain the contrastive behavior for the islands and stripes by different nucleation and remagnetization processes. Considering…
2016
We present detailed airborne in situ measurements of cloud microphysics in two midlatitude cirrus clouds, collected as part of the Cirrus Coupled Cloud-Radiation Experiment (CIRCCREX). A new habit recognition algorithm for sorting cloud particle images using a neural network is introduced. Both flights observed clouds that were related to frontal systems, but one was actively developing whilst the other dissipated as it was sampled. The two clouds showed distinct differences in particle number, habit and size. However a number of common features were observed in the 2DS dataset, including a distinct bimodal size distribution within the higher temperature regions of the clouds. This may resu…
Polymer induced changes of the crystallization scenario in suspensions of hard sphere like microgel particles
2012
We investigated the crystallization scenario of highly cross linked polystyrene particles dispersed in the good solvent 2-ethylnaphtalene and their mixtures with non-adsorbing low molecular weight polysterene polymer using time resolved static light scattering. The samples were prepared slightly below the melting volume fraction of the polymer free system. For the polymer free samples, we obtained polycrystalline solids via crystallization scenario known from hard sphere suspensions with little competition of wall crystal formation. Addition of non-adsorbing low molecular weight polystyrene polymer leads to a considerably slowing down of the bulk crystallization kinetics. We observed a dela…