Search results for "nucleosomes"

showing 8 items of 48 documents

Promoter activity of the sea urchin (Paracentrotus lividus) nucleosomal H3 and H2A and linker H1 a-histone genes is modulated by enhancer and chromat…

2009

Core promoters and chromatin insulators are key regulatory elements that may direct a transcriptional enhancer to prefer a specific promoter in complex genetic loci. Enhancer and insulator flank the sea urchin (Paracentrotus lividus) alpha-histone H2A transcription unit in a tandem repeated cluster containing the five histone genes. This article deals with the specificity of interaction between the H2A enhancer-bound MBF-1 activator and histone gene promoters, and with the mechanism that leads the H1 transcripts to peak at about one-third of the value for nucleosomal H3 and H2A mRNAs. To this end, in vivo competition assays of enhancer and insulator functions were performed. Our evidence su…

Transcription GeneticEnhancer RNAsSettore BIO/11 - Biologia MolecolareGene Regulation Chromatin and EpigeneticsParacentrotus lividusHistonesGeneticsAnimalsNucleosomesea urchin enhancer chromatin insulator histone gene expression microinjectionTransgenesPromoter Regions GeneticEnhancerTranscription factorBinding SitesbiologyPromoterbiology.organism_classificationMolecular biologyChromatinNucleosomesChromatinEnhancer Elements GeneticHistoneembryonic structuresParacentrotusTrans-Activatorsbiology.proteinInsulator Elements
researchProduct

Chromatin structure of the yeast FBP1 gene: transcription-dependent changes in the regulatory and coding regions.

1993

We have studied the chromatin structure of the Saccharomyces cerevisiae FBP1 gene, which codes for fructose-1,6-bisphosphatase. A strong, constitutive, DNase I, micrococcal nuclease and S1 nuclease hypersensitive site is present close to the 3′ end of the coding region. In the repressed state, positioned nucleosomes exist around this site, and subtle changes occur in this nucleosomal organization upon derepression. A DNase I hypersensitive region is located within the promoter between positions −540 and −400 and it extends towards the gene in the derepressed state, leading to an alteration of nucleosomal positioning. Psoralen crosslinking of chromatin, which is used for the first time to st…

Transcription GeneticGenes FungalBioengineeringRNA polymerase IISaccharomyces cerevisiaeApplied Microbiology and BiotechnologyBiochemistryFurocoumarinsGene Expression Regulation FungalGenes RegulatorGeneticsNucleosomeCoding regionDNA FungalPromoter Regions GeneticChIA-PETbiologyModels GeneticChromosome MappingMolecular biologyChromatinChromatinFructose-BisphosphataseNucleosomesCross-Linking Reagentsbiology.proteinDNase I hypersensitive siteHypersensitive siteBiotechnologyMicrococcal nucleaseYeast (Chichester, England)
researchProduct

A method for genome-wide analysis of DNA helical tension by means of psoralen-DNA photobinding

2010

The helical tension of chromosomal DNA is one of the epigenetic landmarks most difficult to examine experimentally. The occurrence of DNA crosslinks mediated by psoralen photobinding (PB) stands as the only suitable probe for assessing this problem. PB is affected by chromatin structure when is done to saturation; but it is mainly determined by DNA helical tension when it is done to very low hit conditions. Hence, we developed a method for genome-wide analysis of DNA helical tension based on PB. We adjusted in vitro PB conditions that discern DNA helical tension and applied them to Saccharomyces cerevisiae cells. We selected the in vivo cross-linked DNA sequences and identified them on DNA …

Transcription GeneticUltraviolet RaysSaccharomyces cerevisiaeMutantADNSaccharomyces cerevisiaeBiologyDNA sequencingGenètica molecularchemistry.chemical_compoundGeneticsTrioxsalenDNA FungalOligonucleotide Array Sequence AnalysisProbabilityTopoisomeraseChromosomeDNAGenomicsbiology.organism_classificationMolecular biologyChromatinNucleosomesChromatinDNA-Binding ProteinsGenòmicaCross-Linking ReagentschemistryNaked DNAbiology.proteinBiophysicsNucleic Acid ConformationMethods OnlineChromosomes FungalDNA TopoisomerasesDNA
researchProduct

Use of the Transglutaminase Reaction To Study the Dissociation of Histone N-Terminal Tails from DNA in Nucleosome Core Particles

1997

We have recently shown that core histones are glutaminyl substrates for transglutaminase (TGase) and that when native nucleosome cores are incubated with monodansylcadaverine (DNC) as donor amine, this fluorescent probe is incorporated into Gln5 and Gln19 of H3 and in Gln22 of H2B [Ballestar et al. (1996) J. Biol. Chem. 271, 18817-18825]. In the present paper, we report that the cause by which Gln22 of H2B is modified in nucleosomes but not in the free histone is the interaction of the region containing that glutamine with DNA. We have used the specificity of the TGase reaction to study the changes induced by increasing ionic strength in the interaction between the histone N-terminal tails …

TransglutaminasesbiologyMovementOsmolar ConcentrationFluorescence PolarizationDNABiochemistryLinker DNAMolecular biologyNucleosomesHistoneschemistry.chemical_compoundHistoneModels ChemicalchemistryIonic strengthCadaverineChromatosomeBiophysicsbiology.proteinNucleosomeHistone octamerFluorescence anisotropyDNABiochemistry
researchProduct

Chromatin structure of transposon Tn903 cloned into a yeast plasmid

1989

Transposon Tn903 contains the APH gene for kanamycin resistance, which is active in yeast [A. Jiménez and J. Davies (1980) Nature (London) 287, 869-871] and is flanked by two inverted repeats (IR) 1057 bp long. When plasmid pAJ50, carrying Tn903 and the 2-microns circle origin of replication, is cloned into Saccharomyces cerevisiae, nucleosomes are assembled in vivo on the prokaryotic DNA of the transposon. Indirect end labeling revealed that three nucleosomes are preferentially positioned on symmetrical sequences from both IRs. DNase I digestion also confirmed that the chromatin structure is symmetrical in both IRs. This suggests that sequence determinants are decisive for chromatin struct…

Transposable elementGeneticsInverted repeatGenes FungalRestriction MappingSaccharomyces cerevisiaeSpheroplastsBiologyOrigin of replicationChromatinNucleosomesChromatinchemistry.chemical_compoundTransformation GeneticPlasmidchemistryDNA Transposable ElementsDeoxyribonuclease INucleosomeCloning MolecularDNA FungalDeoxyribonuclease IMolecular BiologyDNAPlasmidsPlasmid
researchProduct

Epigenetic Status of an Adenovirus Type 12 Transgenome upon Long-Term Cultivation in Hamster Cells

2007

ABSTRACT The epigenetic status of integrated adenovirus type 12 (Ad12) DNA in hamster cells cultivated for about 4 decades has been investigated. Cell line TR12, a fibroblastic revertant of the Ad12-transformed epitheloid hamster cell line T637 with 15 copies of integrated Ad12 DNA, carries one Ad12 DNA copy plus a 3.9-kbp fragment from a second copy. The cellular insertion site for the Ad12 integrate, identical in both cell lines, is a >5.2-kbp inverted DNA repeat. The Ad12 transgenome is packaged around nucleosomes. The cellular junction is more sensitive to micrococcal nuclease at Ad12-occupied sites than at unoccupied sites. Bisulfite sequencing reveals complete de novo methylation i…

Virus CultivationTranscription GeneticVirus IntegrationvirusesImmunologyBisulfite sequencingHamsterMicrobiologyAdenoviridaeCell LineEpigenesis GeneticHistoneschemistry.chemical_compoundEpigenetics of physical exerciseProvirusesCricetinaeVirologyAnimalsMicrococcal NucleaseNucleosomeMethylated DNA immunoprecipitationEpigeneticsCell Line TransformedbiologyAcetylationDNADNA Methylationbiochemical phenomena metabolism and nutritionMolecular biologyVirus-Cell InteractionsNucleosomesstomatognathic diseaseschemistryInsect ScienceDNA Viralbiology.proteinDNAMicrococcal nucleaseJournal of Virology
researchProduct

In vivo assembly of chromatin on pBR322 sequences cloned into yeast plasmids

1989

Abstract In order to study the in vivo assembly of chromatin on prokaryotic DNA templates, we have transformed yeast cells with plasmids pAJ50 and pRB58, which contain pBR322 sequences. In both cases nucleosomes are assembled in vivo on pBR322 DNA, although the nucleosomes are not homogeneous in size. To explore whether there is any preference for nucleosome assembly along pBR322 sequences, we have used an indirect end labeling method. The results indicate that most nucleosomes are placed at random on pBR322, although the probability for histone octamers to interact with some short regions is somewhat reduced. These regions coincide with sequences in which the frequency distribution of nucl…

biologyNucleosome assemblyRestriction MappingSaccharomyces cerevisiaeSaccharomyces cerevisiaeTemplates GeneticMolecular cloningbiology.organism_classificationMolecular biologyChromatinNucleosomesChromatinCell biologyBlotting SouthernRestriction mapHistonePlasmidDNA Transposable Elementsbiology.proteinNucleosomeCloning MolecularMolecular BiologyPlasmidsPlasmid
researchProduct

Xrn1 influence on gene transcription results from the combination of general effects on elongating RNA pol II and gene-specific chromatin configurati…

2020

mRNA homoeostasis is favoured by crosstalk between transcription and degradation machineries. Both the Ccr4-Not and the Xrn1-decaysome complexes have been described to influence transcription. While Ccr4-Not has been shown to directly stimulate transcription elongation, the information available on how Xrn1 influences transcription is scarce and contradictory. In this study we have addressed this issue by mapping RNA polymerase II (RNA pol II) at high resolution, using CRAC and BioGRO-seq techniques in Saccharomyces cerevisiae. We found significant effects of Xrn1 perturbation on RNA pol II profiles across the genome. RNA pol II profiles at 5ʹ exhibited significant alterations that were com…

mRNA bufferingSaccharomyces cerevisiae ProteinsTranscription Elongation GeneticTranscription elongationPolyadenylationSaccharomyces cerevisiaeMRNA DecayRNA polymerase IISaccharomyces cerevisiaeTranscription elongation03 medical and health sciences0302 clinical medicinemRNA decayTranscription (biology)RNA decay/gene transcription crosstalkGene Expression Regulation FungalNucleosomemRNA decay/gene transcription crosstalkMolecular BiologyXrn1Gene030304 developmental biology0303 health sciencesMessenger RNAbiologyChemistryCell Biologybiology.organism_classificationRNA bufferingmChromatinChromatinCell biologyNucleosomesCrosstalk (biology)3ʹ pre-mRNA processing030220 oncology & carcinogenesisXrn13ʹExoribonucleasesbiology.proteinpre-mRNA processingmRNA Polymerase IITranscriptional Elongation FactorsResearch PaperRNA biology
researchProduct