Search results for "numerical"

showing 10 items of 2002 documents

Asymptotic stability of solutions to Volterra-renewal integral equations with space maps

2012

Abstract In this paper we consider linear Volterra-renewal integral equations (VIEs) whose solutions depend on a space variable, via a map transformation. We investigate the asymptotic properties of the solutions, and study the asymptotic stability of a numerical method based on direct quadrature in time and interpolation in space. We show its properties through test examples.

Asymptotic analysisApplied MathematicsNumerical analysisMathematical analysisvolterra renewalSpace mapVolterra integral equationMethod of matched asymptotic expansionsIntegral equationVolterra integral equationAsymptotic behaviorsymbols.namesakeExponential stabilityRenewal equationAsymptotologysymbolsNyström methodNumerical methodsAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

A Dirichlet problem for the Laplace operator in a domain with a small hole close to the boundary

2016

We study the Dirichlet problem in a domain with a small hole close to the boundary. To do so, for each pair $\boldsymbol\varepsilon = (\varepsilon_1, \varepsilon_2 )$ of positive parameters, we consider a perforated domain $\Omega_{\boldsymbol\varepsilon}$ obtained by making a small hole of size $\varepsilon_1 \varepsilon_2 $ in an open regular subset $\Omega$ of $\mathbb{R}^n$ at distance $\varepsilon_1$ from the boundary $\partial\Omega$. As $\varepsilon_1 \to 0$, the perforation shrinks to a point and, at the same time, approaches the boundary. When $\boldsymbol\varepsilon \to (0,0)$, the size of the hole shrinks at a faster rate than its approach to the boundary. We denote by $u_{\bolds…

Asymptotic analysisGeneral MathematicsBoundary (topology)Asymptotic expansion01 natural sciences35J25; 31B10; 45A05; 35B25; 35C20Mathematics - Analysis of PDEsSettore MAT/05 - Analisi MatematicaFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Mathematics (all)Mathematics - Numerical Analysis0101 mathematicsMathematicsDirichlet problemLaplace's equationDirichlet problemAnalytic continuationApplied Mathematics010102 general mathematicsMathematical analysisHigh Energy Physics::PhenomenologyReal analytic continuation in Banach spaceNumerical Analysis (math.NA)Physics::Classical Physics010101 applied mathematicsasymptotic analysisLaplace operatorPhysics::Space PhysicsAsymptotic expansion; Dirichlet problem; Laplace operator; Real analytic continuation in Banach space; Singularly perturbed perforated domain; Mathematics (all); Applied MathematicsAsymptotic expansionLaplace operator[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]Singularly perturbed perforated domainAnalytic functionAnalysis of PDEs (math.AP)Asymptotic expansion; Dirichlet problem; Laplace operator; Real analytic continuation in Banach space; Singularly perturbed perforated domain;
researchProduct

The Effects of Orography on the Extratropical Transition of Tropical Cyclones: A Case Study of Typhoon Sinlaku (2008)

2018

Abstract Extratropical transition (ET) can cause high-impact weather in midlatitude regions and therefore constitutes an ongoing threat at the end of a tropical cyclone’s (TC) life cycle. Most of the ET events occur over the ocean, but some TCs recurve and undergo ET along coastal regions; however, the latter category is less investigated. Typhoon Sinlaku (2008), for example, underwent ET along the southern coast of Japan. It was one of the typhoons that occurred during the T-PARC field campaign, providing unprecedented high-resolution observational data. Sinlaku is therefore an excellent case to investigate the impact of a coastal region, and in particular orography, on the evolution of ET…

Atmospheric Science010504 meteorology & atmospheric sciences0208 environmental biotechnologyOrography02 engineering and technologyVorticity01 natural sciences020801 environmental engineeringExtratropical cyclones; Hurricanes; Orographic effects; Trajectories; Vorticity; Numerical analysis; modelingClimatologyTyphoonMiddle latitudesExtratropical cycloneEnvironmental scienceTropical cyclone0105 earth and related environmental sciences
researchProduct

Mixed-Phase Clouds: Progress and Challenges

2017

Mixed-phase clouds represent a three-phase colloidal system consisting of water vapor, ice particles, and coexisting supercooled liquid droplets. Mixed-phase clouds are ubiquitous in the troposphere, occurring at all latitudes from the polar regions to the tropics. Because of their widespread nature, mixed-phase processes play critical roles in the life cycle of clouds, precipitation formation, cloud electrification, and the radiative energy balance on both regional and global scales. Yet, in spite of many decades of observations and theoretical studies, our knowledge and understanding of mixed-phase cloud processes remains incomplete. Mixed-phase clouds are notoriously difficult to represe…

Atmospheric Science010504 meteorology & atmospheric sciencesMeteorologybusiness.industryEarth scienceCloud physicsCloud computing010502 geochemistry & geophysicsOceanographyNumerical weather prediction01 natural sciencesTroposphere13. Climate actionInternational Satellite Cloud Climatology Projectddc:550Clouds; Aircraft observations; Lidars/Lidar observations; Microwave observations; Radars/Radar observations; Climate modelsEnvironmental scienceClimate modelPrecipitationbusinessWater vaporAstrophysics::Galaxy AstrophysicsPhysics::Atmospheric and Oceanic Physics0105 earth and related environmental sciences
researchProduct

Comparative assessment of RAMS and WRF short-term forecasts over Eastern Iberian Peninsula using various in-situ observations, remote sensing product…

2018

The Regional Atmospheric Modeling System (RAMS) and the Weather Research and Forecasting (WRF) mesoscale models are being used for weather and air quality studies as well as forecasting tools in Numerical Weather Prediction (NWP) systems. In the current study, we perform a comparative assessment of these models under distinct typical atmospheric conditions, classified according to the dominant wind flow and cloudiness, over Eastern Iberian Peninsula. This study is focused on the model representation of key physical processes in terms of meteorology and surface variables during a 7-days period in summer 2011. The hourly outputs produced by these two models are compared not only with observed…

Atmospheric Science010504 meteorology & atmospheric sciencesNumerical weather prediction/forecastingCloud cover0208 environmental biotechnologyWRFMesoscale meteorology02 engineering and technology01 natural sciencesMesoscale modellingSea breezePeninsulaMeteorologiaLand surface modelsAir quality index0105 earth and related environmental sciencesRemote sensinggeographygeography.geographical_feature_categoryRAMSFísica de la TierraRemote sensingNumerical weather prediction020801 environmental engineeringWeather Research and Forecasting ModelRegional Atmospheric Modeling SystemEnvironmental science
researchProduct

Aviation Contrail Cirrus and Radiative Forcing Over Europe During 6 Months of COVID‐19

2021

Abstract The COVID‐19 pandemic led to a 72% reduction of air traffic over Europe in March–August 2020 compared to 2019. Modeled contrail cover declined similarly, and computed mean instantaneous radiative contrail forcing dropped regionally by up to 0.7 W m−2. Here, model predictions of cirrus optical thickness and the top‐of‐atmosphere outgoing longwave and reflected shortwave irradiances are tested by comparison to Meteosat‐SEVIRI‐derived data. The agreement between observations and modeled data is slightly better when modeled contrail cirrus contributions are included. The spatial distributions and diurnal cycles of the differences in these data between 2019 and 2020 are partially caused…

Atmospheric Science010504 meteorology & atmospheric sciencesPollution: Urban Regional and GlobalcirrusForcing (mathematics)Atmospheric Composition and Structure010502 geochemistry & geophysicsAtmospheric sciencesBiogeosciences01 natural sciencesOceanography: Biological and ChemicalCloud/Radiation InteractionRadiative transferWolkenphysikInstitut für Physik der AtmosphäreMarine PollutioncontrailOceanography: GeneralGeophysicsPollution: Urban and RegionalAtmospheric ProcessesCirrusClouds and AerosolssatelliteMegacities and Urban Environmentcontrail aircraft climate observation model traffic Meteosat CoCiPRadiation: Transmission and ScatteringAtmospherePaleoceanographyEvolution of the EarthCOVID‐19Research LetterGlobal ChangeBiosphere/Atmosphere InteractionsUrban Systems0105 earth and related environmental sciencesEvolution of the AtmosphereAerosolsradiative forcingVerkehrsmeteorologieAtmosphereLongwaveAtmosphärische SpurenstoffeRadiative forcingAerosols and ParticlesNumerical weather predictionTectonophysicsaviationGeneral Earth and Planetary SciencesEnvironmental scienceShortwaveNatural HazardsGeophysical Research Letters
researchProduct

Observed versus simulated mountain waves over Scandinavia – improvement of vertical winds, energy and momentum fluxes by enhanced model resolut…

2017

Abstract. Two mountain wave events, which occurred over northern Scandinavia in December 2013 are analysed by means of airborne observations and global and mesoscale numerical simulations with horizontal mesh sizes of 16, 7.2, 2.4 and 0.8 km. During both events westerly cross-mountain flow induced upward-propagating mountain waves with different wave characteristics due to differing atmospheric background conditions. While wave breaking occurred at altitudes between 25 and 30 km during the first event due to weak stratospheric winds, waves propagated to altitudes above 30 km and interfacial waves formed in the troposphere at a stratospheric intrusion layer during the second event. Global an…

Atmospheric Science010504 meteorology & atmospheric sciencesairborne observationsFlow (psychology)Mesoscale meteorologygravity waves010502 geochemistry & geophysicsAtmospheric sciences01 natural sciencesPhysics::GeophysicsTropospherelcsh:ChemistryGW-LCYCLE IPhysics::Atmospheric and Oceanic Physics0105 earth and related environmental sciencesMomentum (technical analysis)Institut für Physik der AtmosphäreLidarTurbulent diffusionVerkehrsmeteorologieBreaking wavelcsh:QC1-999WavelengthAmplitudenumerical modelinglcsh:QD1-999Geologylcsh:PhysicsAtmospheric Chemistry and Physics
researchProduct

Numerical simulation of internal boundary-layer development and comparison with atmospheric data

2006

A finite-volume numerical model is employed to investigate the adaptation of the atmospheric boundary layer to a change in the underlying surface roughness, such as that existing in the transition from land to the free surface of a water body. Numerical results are validated by comparison with neutral stratification atmospheric data and compared with the internal boundary-layer (IBL) heights computed using a number of existing empirical formulae. The numerical analysis allows an extension of the fetch range in which the existing formulae, calibrated only by comparison with short fetch data, may be applied. An argument is offered that the spatial variability of the water surface roughness sh…

Atmospheric ScienceBoundary layerPlanetary boundary layerNumerical analysisFree surfaceFetchSurface roughnessStratification (water)Surface finishMechanicsGeologyCanopy Forest canopy Large eddy simulationBoundary-Layer Meteorology
researchProduct

Improving RAMS and WRF mesoscale forecasts over two distinct vegetation covers using an appropriate thermal roughness length parameterization

2019

Land Surface Models (LSM) have shown some difficulties to properly simulate day-time 2-m air and surface skin temperatures. This kind of models are coupled to atmospheric models in mesoscale modelling, such as the Regional Atmospheric Modeling System (RAMS) and the Weather Research and Forecasting (WRF) Model. This model coupling is used within Numerical Weather Prediction Systems (NWP) in order to forecast key physical processes for agricultural meteorology and forestry as well as in ecological modelling. The current study first evaluates the surface energy fluxes and temperatures simulated by these two state-of-the-art NWP models over two distinct vegetated covers, one corresponding to a …

Atmospheric ScienceGlobal and Planetary ChangeMeteorologyNumerical weather prediction/forecastingFísica de la TierraMesoscale meteorologyEuropean Regional Development FundSurface-layer parameterizationForestryVegetationMesoscale modellingBoscos i silviculturaSurface energy fluxRoughness lengthThermal roughness lengthWeather Research and Forecasting ModelEnvironmental scienceLand surface modelsSurface energy fluxesAgronomy and Crop SciencePhysics::Atmospheric and Oceanic Physics
researchProduct

Processes governing the amplification of ensemble spread in a medium-range forecast with large forecast uncertainty

2019

This study provides a process-based perspective on the amplification of forecast uncertainty and forecast errors in ensemble forecasts. A case from the North Atlantic Waveguide and Downstream Impact Experiment that exhibits large forecast uncertainty is analysed. Two aspects of the ensemble behaviour are considered: (a) the mean divergence of the ensemble members, indicating the general amplification of forecast uncertainty, and (b) the divergence of the best and worst members, indicating extremes in possible error-growth scenarios. To analyse the amplification of forecast uncertainty, a tendency equation for the ensemble variance of potential vorticity (PV) is derived and partitioned into …

Atmospheric ScienceMeteorology530 PhysicsPotential vorticityMedium rangeRossby waveEnvironmental scienceAtmospheric dynamicsPredictability530 PhysikNumerical weather predictionPhysics::Atmospheric and Oceanic Physics
researchProduct