Search results for "o-Phenylenediamine"
showing 4 items of 4 documents
CCDC 607312: Experimental Crystal Structure Determination
2006
Related Article: V.Tabernero, M.C.Maestre, G.Jimenez, T.Cuenca, C.R.de Arellano|2006|Organometallics|25|1723|doi:10.1021/om051088y
ChemInform Abstract: 1-Alkyl- and Azeto[1,2-a][1,5]benzodiazepine Derivatives in the Reaction of o-Phenylenediamine with 3-(Dimethylamino)propiopheno…
2001
The reaction of o-phenylenediamine (4) with one, two or three equivalents of p-substituted 3-dimethylaminopropiophenone hydrochlorides 5a−e was studied. 4-Aryl-2,3-dihydro-1H-1,5-benzodiazepine derivatives 6a−e were obtained in good yields, along with the 1:2-adducts 7c−e and the unexpected 1:3-adducts rac-8c−e. The type of adduct formed is determined by the molar ratio of the reactants 4 and 5 and by the nature of the substituent in the para position of the propiophenone 5.
1-Alkyl- and azeto[1,2-a][1,5]benzodiazepine derivatives in the reaction of o-phenylenediamine with 3-(dimethylamino)propiophenones
2000
The reaction of o-phenylenediamine (4) with one, two or three equivalents of p-substituted 3-dimethylaminopropiophenone hydrochlorides 5a−e was studied. 4-Aryl-2,3-dihydro-1H-1,5-benzodiazepine derivatives 6a−e were obtained in good yields, along with the 1:2-adducts 7c−e and the unexpected 1:3-adducts rac-8c−e. The type of adduct formed is determined by the molar ratio of the reactants 4 and 5 and by the nature of the substituent in the para position of the propiophenone 5.
Interaction of mushroom tyrosinase with aromatic amines, o-diamines and o-aminophenols
2004
3-Amino-L-tyrosine was found to be a substrate of mushroom tyrosinase, contrary to what had previously been reported in the literature. A series of amino derivatives of benzoic acid were tested as substrates and inhibitors of the enzyme. 3-Amino-4-hydroxybenzoic acid, 4-amino-3-hydroxybenzoic acid and 3,4-diaminobenzoic acid were oxidized by this enzyme, as previously reported for Neurospora crassa tyrosinase, but 4-aminobenzoic acid and 3-aminobenzoic acid were not. Interestingly, 3-amino-4-hydroxybenzoic acid was oxidized five times faster than 4-amino-3-hydroxybenzoic acid, confirming the importance of proton transfer from the hydroxyl group at C-4 position. All compounds inhibited the m…