Search results for "objective"

showing 10 items of 505 documents

A choice of bilevel linear programming solving parameters: factoraggregation approach

2013

Our paper deals with the problem of choosing correct parameters for the bilevel linear program- ming solving algorithm proposed by M. Sakawa and I. Nishizaki. We suggest an approach based on fac- toraggregation, which is a specially designed general aggregation operator. The idea of factoraggregation arises from factorization by the equivalence relation generated by the upper level objective function. We prove several important properties of the factorag- gregation result regarding the analysis of param- eters in order to find an optimal solution for the problem. We illustrate the proposed method with some numerical and graphical examples, in particu- lar we consider a modification of the m…

Mathematical optimizationLinear programmingComputer scienceMonotonic functionFuzzy logicMultiobjective linear programming problemOperator (computer programming)Production planningBilevel linear programming problemFactorizationEquivalence relationBoundary value problem:MATHEMATICS::Applied mathematics [Research Subject Categories]General aggregation operator
researchProduct

Improving Computing Systems Automatic Multiobjective Optimization Through Meta-Optimization

2016

This paper presents the extension of framework for automatic design space exploration (FADSE) tool using a meta-optimization approach, which is used to improve the performance of design space exploration algorithms, by driving two different multiobjective meta-heuristics concurrently. More precisely, we selected two genetic multiobjective algorithms: 1) non-dominated sorting genetic algorithm-II and 2) strength Pareto evolutionary algorithm 2, that work together in order to improve both the solutions’ quality and the convergence speed. With the proposed improvements, we ran FADSE in order to optimize the hardware parameters’ values of the grid ALU processor (GAP) micro-architecture from a b…

Mathematical optimizationMeta-optimizationComputer scienceCycles per instructionDesign space explorationPareto principleSortingEvolutionary algorithm02 engineering and technologyComputer Graphics and Computer-Aided DesignMulti-objective optimization020202 computer hardware & architecture0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingAlgorithm designElectrical and Electronic EngineeringSoftwareIEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
researchProduct

Pareto-optimal Glowworm Swarms Optimization for Smart Grids Management

2013

This paper presents a novel nature-inspired multi-objective optimization algorithm. The method extends the glowworm swarm particles optimization algorithm with algorithmical enhancements which allow to identify optimal pareto front in the objectives space. In addition, the system allows to specify constraining functions which are needed in practical applications. The framework has been applied to the power dispatch problem of distribution systems including Distributed Energy Resources (DER). Results for the test cases are reported and discussed elucidating both numerical and complexity analysis.

Mathematical optimizationMeta-optimizationComputer scienceDerivative-free optimizationTest functions for optimizationSwarm behaviourMulti-swarm optimizationevolutionary optimization swarm-optimization pareto optimization micro-gridsMulti-objective optimizationMetaheuristicEngineering optimization
researchProduct

Simultaneous and multi-criteria optimization of TS requirements and maintenance at NPPs

2002

Abstract One of the main concerns of the nuclear industry is to improve the availability of safety-related systems at nuclear power plants (NPPs) to achieve high safety levels. The development of efficient testing and maintenance has been traditionally one of the different ways to guarantee high levels of systems availability, which are implemented at NPP through technical specification and maintenance requirements (TS&M). On the other hand, there is a widely recognized interest in using the probabilistic risk analysis (PRA) for risk-informed applications aimed to emphasize both effective risk control and effective resource expenditures at NPPs. TS&M-related parameters in a plant are associ…

Mathematical optimizationMeta-optimizationOptimization problemNuclear Energy and EngineeringComputer scienceProbabilistic-based design optimizationMulti-swarm optimizationMulti-objective optimizationBilevel optimizationMetaheuristicEngineering optimizationAnnals of Nuclear Energy
researchProduct

No-Preference Methods

1998

In no-preference methods, where the opinions of the decision maker are not taken into consideration, the multiobjective optimization problem is solved using some relatively simple method and the solution obtained is presented to the decision maker. The decision maker may either accept or reject the solution. It seems quite unlikely that the solution best satisfying the decision maker could be found with these methods. That is why no-preference methods are suitable for situations where the decision maker does not have any special expectations of the solution and (s)he is satisfied simply with some optimal solution. The working order here is: 1) analyst, 2) none.

Mathematical optimizationMultiobjective optimization problemComputer scienceOrder (business)Simple (abstract algebra)Decision makerPreference (economics)
researchProduct

A Priori Methods

1998

In the case of a priori methods, the decision maker must specify her or his preferences, hopes and opinions before the solution process. The difficulty is that the decision maker does not necessarily know beforehand what it is possible to attain in the problem and how realistic her or his expectations are. The working order in these methods is: 1) decision maker, 2) analyst.

Mathematical optimizationMultiobjective optimization problemWeighting coefficientComputer scienceOrder (business)Goal programmingA priori and a posterioriAspiration levelDecision maker
researchProduct

Developing Domain-Knowledge Evolutionary Algorithms for Network-on-Chip Application Mapping

2013

This paper addresses the Network-on-Chip (NoC) application mapping problem. This is an NP-hard problem that deals with the optimal topological placement of Intellectual Property cores onto the NoC tiles. Network-on-Chip application mapping Evolutionary Algorithms are developed, evaluated and optimized for minimizing the NoC communication energy. Two crossover and one mutation operators are proposed. It is analyzed how each optimization algorithm performs with every genetic operator, in terms of solution quality and convergence speed. Our proposed operators are compared with state-of-the-art genetic operators for permutation problems. Finally, the problem is approached in a multi-objective w…

Mathematical optimizationMutation operatorTheoretical computer scienceComputer Networks and CommunicationsComputer scienceQuality control and genetic algorithmsCrossoverEvolutionary algorithmGenetic operatorMulti-objective optimizationNetwork on a chipArtificial IntelligenceHardware and ArchitectureSimulated annealingGenetic algorithmGenetic representationSoftwareMicroprocessors and Microsystems
researchProduct

A multi-objective strategy for concurrent mapping and routing in networks on chip

2009

The design flow of network-on-chip (NoCs) include several key issues. Among other parameters, the decision of where cores have to be topologically mapped and also the routing algorithm represent two highly correlated design problems that must be carefully solved for any given application in order to optimize several different performance metrics. The strong correlation between the different parameters often makes that the optimization of a given performance metric has a negative effect on a different performance metric. In this paper we propose a new strategy that simultaneously refines the mapping and the routing function to determine the Pareto optimal configurations which optimize averag…

Mathematical optimizationNetwork on a chipRobustness (computer science)Computer scienceMultipath routingAlgorithm designFault toleranceNetwork topologyMulti-objective optimization2009 IEEE International Symposium on Parallel & Distributed Processing
researchProduct

Tangent and Normal Cones in Nonconvex Multiobjective Optimization

2000

Trade-off information is important in multiobjective optimization. It describes the relationships of changes in objective function values. For example, in interactive methods we need information about the local behavior of solutions when looking for improved search directions.

Mathematical optimizationNon-convexityTangentMulti-objective optimizationMathematics
researchProduct

Interactive Method NIMBUS for Nondifferentiable Multiobjective Optimization Problems

1997

An interactive method, NIMBUS, for nondifferentiable multiobjective optimization problems is introduced. The method is capable of handling several nonconvex locally Lipschitzian objective functions subject to nonlinear (possibly nondifferentiable) constraints. The idea of NIMBUS is that the decision maker can easily indicate what kind of improvements are desired and what kind of impairments are tolerable at the point considered. The decision maker is asked to classify the objective functions into five different classes: those to be improved, those to be improved down to some aspiration level, those to be accepted as they are, those to be impaired till some upper bound, and those allowed to …

Mathematical optimizationNonlinear systemMultiobjective optimization problemComputer sciencePoint (geometry)Aspiration levelDecision makerUpper and lower boundsMulti-objective optimization
researchProduct