Search results for "ominaisarvot"

showing 8 items of 8 documents

Dynamic analysis for axially moving viscoelastic panels

2012

In this study, stability and dynamic behaviour of axially moving viscoelastic panels are investigated with the help of the classical modal analysis. We use the flat panel theory combined with the Kelvin–Voigt viscoelastic constitutive model, and we include the material derivative in the viscoelastic relations. Complex eigenvalues for the moving viscoelastic panel are studied with respect to the panel velocity, and the corresponding eigenfunctions are found using central finite differences. The governing equation for the transverse displacement of the panel is of fifth order in space, and thus five boundary conditions are set for the problem. The fifth condition is derived and set at the in-…

Constitutive equationDynamicMaterial derivative02 engineering and technology01 natural sciencesViscoelasticityDisplacement (vector)Physics::Fluid DynamicsViscositystabiilius0203 mechanical engineeringMaterials Science(all)viscoelasticModelling and Simulation0103 physical sciencesGeneral Materials ScienceBoundary value problemta216010301 acousticsMathematicsViscoelasticdynamicominaisarvotMechanical EngineeringApplied MathematicsLiikkuvapalkkiFlexural rigidityBeamEigenvaluesMechanicsviscoelastinenstabilityCondensed Matter Physics020303 mechanical engineering & transportsdynaaminenMechanics of MaterialsModeling and SimulationBending stiffnessbeamMovingliikkuminenStabilityInternational Journal of Solids and Structures
researchProduct

A quantitative reverse Faber-Krahn inequality for the first Robin eigenvalue with negative boundary parameter

2021

The aim of this paper is to prove a quantitative form of a reverse Faber-Krahn type inequality for the first Robin Laplacian eigenvalueλβwith negative boundary parameter among convex sets of prescribed perimeter. In that framework, the ball is the only maximizer forλβand the distance from the optimal set is considered in terms of Hausdorff distance. The key point of our stategy is to prove a quantitative reverse Faber-Krahn inequality for the first eigenvalue of a Steklov-type problem related to the original Robin problem.

Control and Optimizationconvex setsBoundary (topology)variaatiolaskenta01 natural sciencesSet (abstract data type)Perimeter0103 physical sciencesquantitative isoperimetric inequalityConvex setBall (mathematics)0101 mathematicsEigenvalues and eigenvectorsMathematicsosittaisdifferentiaaliyhtälötominaisarvot010102 general mathematicsMathematical analysisRegular polygonMathematics::Spectral Theorymatemaattinen optimointiQuantitative isoperimetric inequalityComputational MathematicsHausdorff distanceControl and Systems EngineeringRobin eigenvalue010307 mathematical physicsLaplace operator
researchProduct

Stability of moving viscoelastic panels interacting with surrounding fluid

2012

We study a model describing the out-of-plane vibrations of an axially moving viscoelastic panel submerged in flowing fluid. The panel is assumed to travel at a constant velocity between two fixed supports, and it is modeled as a flat panel made of viscoelastic Kelvin-Voigt material. The fluid flow is modeled with the help of the added mass coefficients. The resulting dynamic equation is a partial differential equation of fifth order in space. Five boundary conditions are set for the studied problem. The behavior of the panel is analyzed with the help of its eigenvalues (eigenfrequencies). These characteristics are studied with respect to the velocity of the panel. In our study, we have incl…

Physics::Fluid Dynamicsominaisarvotstabiiliuspaperiteollisuusaxial flowaksiaalinen virtausneste-rakennekytkentäFSImoving panelstabilityliikkuva paneeliviskoelastisuusviscoelasticity
researchProduct

Spectral analysis and quantum chaos in two-dimensional nanostructures

2015

This thesis describes a study into the eigenvalues and eigenstates of twodimensional (2D) quantum systems. The research is summarized in four scientific publications by the author. The underlying motivation for this work is the grand question of quantum chaos: how does chaos, as known in classical mechanics, manifest in quantum mechanics? The search and analysis of these quantum fingerprints of chaos requires efficient numerical tools and methods, the development of which is given a special emphasis in this thesis. The first publication in this thesis concerns the eigenspectrum analysis of a nanoscale device. It is shown that a measured addition energy spectrum can be explained by a simple …

kaaosteoriaominaisarvotnumeeriset menetelmätkaksiulotteisuusEigenvaluesSpectrum analysisNanostructuresnanorakenteetkvanttikaaosQuantum systemskvanttimekaniikkaQuantum chaosNumerical analysisspektrianalyysi
researchProduct

Matriisin Hessenbergin muoto

2013

ominaisarvotsimilaarisuusKrylovin menetelmäneliömatriisikarakteristinen polynomiHessenbergin matriisimatriisilaskentapolynomitominaisarvolineaarialgebraHouseholderin muunnosmatriisit
researchProduct

Kompaktien operaattoreiden spektraaliteoriasta

2008

ominaisarvotvektoritHilbert-avaruusspektraaliteoria
researchProduct

p-Laplacen operaattorin ominaisarvo-ongelmasta

2016

Tämän tutkielman tarkoitus on tutustua epälineaarisiin ominaisarvo-ongelmiin p-Laplacen operaattorin ominaisarvo-ongelman kautta. p-Laplacen operaattori on Laplacen operaattorin eräs yleistys ja tarkastelun kohteena oleva ominaisarvo-ongelma on Dirichletin ominaisarvo-ongelman yleistys. Tutkielmassa kerrataan ensin tarvittavia taustatietoja Sobolevin avaruuksista ja funktionaalianalyysistä, ja keskitytään sitten itse ongelmaan. Päätulokset koskevat ensimmäistä ominaisarvoa, ja ne ovat ensimmäisen ominaisarvon olemassaolo, ensimmäisen ominaisarvon karakterisointi Rayleighin osamäärän avulla, ensimmäisen ominaisfunktion yksinkertaisuus, ja se, että ensimmäinen ominaisfunktio on ainoa ominaisf…

osittaisdifferentiaaliyhtälötominaisarvotLaplaceominaisarvoharmoninenSobolevin avaruus
researchProduct

Guaranteed error bounds and local indicators for adaptive solvers using stabilised space-time IgA approximations to parabolic problems

2019

The paper is concerned with space–time IgA approximations to parabolic initial–boundary value problems. We deduce guaranteed and fully computable error bounds adapted to special features of such type of approximations and investigate their efficiency. The derivation of error estimates is based on the analysis of the corresponding integral identity and exploits purely functional arguments in the maximal parabolic regularity setting. The estimates are valid for any approximation from the admissible (energy) class and do not contain mesh-dependent constants. They provide computable and fully guaranteed error bounds for the norms arising in stabilised space–time approximations. Furthermore, a p…

osittaisdifferentiaaliyhtälötominaisarvotfunctional error estimatesguaranteed error boundsadaptive space–time schemesnumeerinen analyysivirheanalyysistabilised space–time IgA schemesparabolic initial-value boundary problems
researchProduct