Search results for "ominaisuudet"

showing 10 items of 175 documents

Magneto-Structural Properties and Theoretical Studies of a Family of Simple Heterodinuclear Phenoxide/Alkoxide Bridged MnIIILnIII Complexes : On the …

2018

A family of MnIIILnIII strictly dinuclear complexes of general formula [MnIII(μ-L)(μ-OMe)(NO3)LnIII(NO3)2(MeOH)] (LnIII = Gd, Dy, Er, Ho) has been assembled in a one pot synthesis from a polydentate, multipocket aminobis(phenol)ligand [6,6'-{(2-(1-morpholyl)ethylazanediyl)bis(methylene)}bis(2-methoxy-4-methylphenol)], Mn(NO3)2·4H2O, Ln(NO3)3· nH2O, and NEt3 in MeOH. These compounds represent the first examples of fully structurally and magnetically characterized dinuclear MnIIILnIII complexes. Single X-ray diffraction studies reveal that all complexes are isostructural, consisting of neutral dinuclear molecules where the MnIII and LnIII metal ions, which exhibit distorted octahedral MnN2O4 …

magneettiset ominaisuudet010405 organic chemistryChemistryAb initiokompleksiyhdisteet010402 general chemistry01 natural sciences0104 chemical sciencesInorganic ChemistryMagnetizationMagnetic anisotropyCrystallographyAb initio quantum chemistry methodsAntiferromagnetismMoleculecoordination complexesmagnetic propertiesPhysical and Theoretical ChemistryIsostructuralAnisotropyta116Inorganic Chemistry
researchProduct

Room-Temperature Magnetic Bistability in a Salt of Organic Radical Ions

2021

International audience; Cocrystallization of 7,7′,8,8′-tetracyanoquinodimethane radical anion (TCNQ −•) and 3-methylpyridinium-1,2,3,5dithiadiazolyl radical cation (3-MepyDTDA +•) afforded isostructural acetonitrile (MeCN) or propionitrile (EtCN) solvates containing cofacial π dimers of homologous components. Loss of lattice solvent from the diamagnetic solvates above 366 K affords a high-temperature paramagnetic phase containing discrete TCNQ −• and weakly bound π dimers of 3-MepyDTDA +• , as evidenced by X-ray diffraction methods and magnetic susceptibility measurements. Below 268 K, a first-order phase transition occurs, leading to a low-temperature diamagnetic phase with TCNQ −• σ dimer…

magneettiset ominaisuudetDimer02 engineering and technologyGeneral Chemistry[CHIM.MATE]Chemical Sciences/Material chemistry010402 general chemistry021001 nanoscience & nanotechnologyvapaat radikaalit01 natural sciencesBiochemistryTetracyanoquinodimethaneMagnetic susceptibilityCatalysis0104 chemical scienceschemistry.chemical_compoundParamagnetismCrystallographyColloid and Surface ChemistryRadical ionchemistryDiamagnetismPropionitrileIsostructural0210 nano-technologyorgaaniset yhdisteet
researchProduct

Ligand mediated evolution of size dependent magnetism in cobalt nanoclusters.

2018

We use density functional theory to model the impact of a ligand shell on the magnetic properties of CoN (15 ≤ N ≤ 55) nanoclusters. We study three different ligand shells on each nanocluster core size, each known to have different electronic interactions with the surface: pure Cl ligand shells (X-type), pure PH3 ligand shells (L-type), and two component ligand shells with mixtures of Cl and PH3 ligands. The simulations show that the identity, arrangement, and total coverage of the ligand shell controls the distribution of local magnetic moments across the CoN core. On the surface of an unpassivated CoN nanocluster, the Co-Co coordination number (CN) is known to determine the local magnetic…

magneettiset ominaisuudetMaterials scienceMagnetismCoordination numberShell (structure)General Physics and Astronomychemistry.chemical_element02 engineering and technology010402 general chemistry01 natural sciencesNanoclustersnanorakenteetnanostructureskobolttiPhysical and Theoretical Chemistryta116ta114Magnetic momentLigand021001 nanoscience & nanotechnologycobalt0104 chemical sciencesCrystallographychemistryDensity functional theorymagnetic properties0210 nano-technologyCobaltPhysical chemistry chemical physics : PCCP
researchProduct

Single-molecule magnet properties of a monometallic dysprosium pentalene complex

2018

The pentalene-ligated dysprosium complex [(η8-Pn†)Dy(Cp*)] (1Dy) (Pn† = [1,4-(iPr3Si)2C8H4]2−) and its magnetically dilute analogue are single-molecule magnets, with energy barriers of 245 cm−1. Whilst the [Cp*]− ligand in 1Dy provides a strong axial crystal field, the overall axiality of this system is attenuated by the unusual folded structure of the [Pn†]2− ligand. peerReviewed

magneettiset ominaisuudetMaterials sciencePentalenechemistry.chemical_element010402 general chemistry01 natural sciencesCatalysisCrystalchemistry.chemical_compoundMaterials Chemistrycoordination complexesSingle-molecule magnetta116010405 organic chemistryLigandFolded structureMetals and AlloyskompleksiyhdisteetGeneral Chemistry0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCrystallographychemistryMagnetCeramics and CompositesDysprosiummagnetic propertiesChemical Communications
researchProduct

The Role of Orbital Symmetries in Enforcing Ferromagnetic Ground State in Mixed Radical Dimers

2018

One of the first steps in designing ferromagnetic (FM) molecular materials of p-block radicals is the suppression of covalent radical-radical interactions that stabilize a diamagnetic ground state. In this contribution, we demonstrate that FM coupling between p-block radicals can be achieved by constructing mixed dimers from different radicals with differing symmetries of their singly occupied molecular orbitals. The applicability of this approach is demonstrated by studying magnetic interactions in organic radical dimers built from different derivatives of the well-known phenalenyl radical. The calculated enthalpies of dimerization for different homo- and heterodimers show that the formati…

magneettiset ominaisuudetMaterials scienceRadicalDimerfree radicalsvapaat radikaalit010402 general chemistry01 natural sciencesoligomerchemistry.chemical_compound0103 physical sciencesGeneral Materials ScienceMolecular orbitalPhysics::Chemical PhysicsPhysical and Theoretical Chemistryta116Coupling010304 chemical physics0104 chemical sciencesoligomeeriFerromagnetismchemistryChemical physicsCovalent bondDiamagnetismGround stateThe Journal of Physical Chemistry Letters
researchProduct

Thermalization of hot electrons via interfacial electron-magnon interaction

2019

Recent work on layered structures of superconductors (S) or normal metals (N) in contact with ferromagnetic insulators (FI) has shown how the properties of the previous can be strongly affected by the magnetic proximity effect due to the static FI magnetization. Here we show that such structures can also exhibit a new electron thermalization mechanism due to the coupling of electrons with the dynamic magnetization, i.e., magnons in FI. We here study the heat flow between the two systems and find that in thin films the heat conductance due to the interfacial electron-magnon collisions can dominate over the well-known electron-phonon coupling below a certain characteristic temperature that ca…

magneettiset ominaisuudetMaterials scienceelectron relaxationBand gapFOS: Physical sciences02 engineering and technologyElectronsuperconductors7. Clean energy01 natural sciencesmagnonssuprajohteetMagnetization0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Proximity effect (superconductivity)010306 general physicsComputer Science::DatabasesSuperconductivityCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsMagnonConductance021001 nanoscience & nanotechnologyFerromagnetismtransport phenomenalämmön johtuminenCondensed Matter::Strongly Correlated Electrons0210 nano-technology
researchProduct

Magnetization Dynamics in Proximity-Coupled Superconductor-Ferromagnet-Superconductor Multilayers

2020

In this work, magnetization dynamics is studied in superconductor/ferromagnet/superconductor three-layered films in a wide frequency, field, and temperature ranges using the broad-band ferromagnetic resonance measurement technique. It is shown that in presence of both superconducting layers and of superconducting proximity at both superconductor/ferromagnet interfaces a massive shift of the ferromagnetic resonance to higher frequencies emerges. The phenomenon is robust and essentially long-range: it has been observed for a set of samples with the thickness of ferromagnetic layer in the range from tens up to hundreds of nanometers. The resonance frequency shift is characterized by proximity-…

magneettiset ominaisuudetMaterials sciencesuprajohtavuusFOS: Physical sciencesmagnetization dynamicsGeneral Physics and AstronomyApplied Physics (physics.app-ph)spin wavesmagnonssuprajohteetSuperconductivity (cond-mat.supr-con)MagnetizationCondensed Matter::Materials ScienceferromagnetsCondensed Matter::SuperconductivityAnisotropySuperconductivityMagnonicsMagnetization dynamicsCondensed matter physicstype-II superconductorsCondensed Matter - SuperconductivityPhysics - Applied PhysicsFerromagnetic resonanceMagnetic anisotropyFerromagnetismproximity effectmultilayer thin filmsCondensed Matter::Strongly Correlated ElectronsohutkalvotPhysical review applied
researchProduct

Synthesis of isomorphous cobalt and nickel thiocyanate coordination compounds: Effect of metals on compound properties

2019

The reaction of 2-methylpiperazine with the thiocyanate ligand and two transition metals leads to the production of two new isomorphous [ML2SCN4] where L is the 2-methylpiperazine and [M =Co (1), and Ni (2)], presenting an octahedral configuration. These compounds were characterized by single crystal X-ray crystallography, TG-DTA analysis, as well as infrared and UV-Vis spectroscopy and TG-DTA. The magnetic and antibacterial properties were also determined. Through the link with N-H···S hydrogen bonds, a global 3D network was established. The studied compounds show the metal center’s impact leading to different properties. Indeed, the first compound shows high spin orbit coupling, whereas t…

magneettiset ominaisuudetchemistry.chemical_element010402 general chemistry01 natural sciencesCoordination complexInorganic ChemistryMetalchemistry.chemical_compoundTransition metalMaterials Chemistrycobalt coordination compoundkobolttiPhysical and Theoretical Chemistryantimikrobiset yhdisteetchemistry.chemical_classificationThiocyanate010405 organic chemistryHydrogen bondLigandantibacterial activitieskompleksiyhdisteetnickel coordination compound0104 chemical sciencesCrystallographychemistryvisual_artvisual_art.visual_art_mediummagnetic propertiesisomorphous structurenikkeliCobaltSingle crystalPolyhedron
researchProduct

Rare‐earth cyclobutadienyl sandwich complexes: Synthesis, structure and dynamic magnetic properties

2018

The potassium cyclobutadienyl [K2{η4‐C4(SiMe3)4}] (1) reacts with MCl3(THF)3.5 (M=Y, Dy) to give the first rare‐earth cyclobutadienyl complexes, that is, the complex anions [M{η4‐C4(SiMe3)4}{η4‐C4(SiMe3)3‐κ‐(CH2SiMe2}]2−, (2M), as their dipotassium salts. The tuck‐in alkyl ligand in 2M is thought to form through deprotonation of the “squarocene” complexes [M{η4‐C4(SiMe3)4}2]− by 1. Complex 2Dy is a single‐molecule magnet, but with prominent quantum tunneling. An anisotropy barrier of 323(22) cm−1 was determined for 2Dy in an applied field of 1 kOe, and magnetic hysteresis loops were observed up to 7 K. nonPeerReviewed

magneettiset ominaisuudetcyclobutadienyl ligandsmagneetitchemistry.chemical_element010402 general chemistry01 natural sciencesCatalysisDeprotonationAnisotropyta116magnetsAlkylQuantum tunnellingchemistry.chemical_classificationkemiallinen synteesiorganometallics dysprosium010405 organic chemistryLigandOrganic ChemistrykompleksiyhdisteetGeneral Chemistryharvinaiset maametallitMagnetic hysteresis0104 chemical sciencesCrystallographychemistryMagnetDysprosiumsingle-moleculerare-earth elements
researchProduct

Experimental and Computational Study of Unique Tetranuclear µ3-Chloride and µ-Phenoxo/Chloro-Bridged Defective Dicubane Cobalt(II) Clusters

2016

Two tetranuclear CoII clusters [Co4(L)2(µ3-Cl)2Cl2] have been prepared by using multidentate diaminobisphenolate ligands. The solid-state structures of the complexes were determined by single-crystal X-ray diffraction. The cores of the cluster compounds can be defined as a two-vertex-deficient dicubane geometry (pseudo-dicubane). In the central unit, the cobalt(II) cations are linked through phenoxide oxygen (outer bridges) and chloride anions (inner bridges), previously unprecedented in this type of cobalt cluster. The magnetic properties were studied by both experimental and computational methods. By using a combination of techniques, we were able to determine the nature and strength of t…

magneettiset ominaisuudetdensity functional calculationscluster compoundskoboltti
researchProduct