Search results for "open quantum system"
showing 10 items of 190 documents
Quantum Zeno subspaces induced by temperature
2011
We discuss the partitioning of the Hilbert space of a quantum system induced by the interaction with another system at thermal equilibrium, showing that the higher the temperature the more effective is the formation of Zeno subspaces. We show that our analysis keeps its validity even in the case of interaction with a bosonic reservoir, provided appropriate limitations of the relevant bandwidth.
Photon localization versus population trapping in a coupled-cavity array
2014
We consider a coupled-cavity array (CCA), where one cavity interacts with a two-level atom under the rotating-wave approximation. We investigate the excitation transport dynamics across the array, which arises in the atom's emission process into the CCA vacuum. Due to the known formation of atom-photon bound states, partial field localization and atomic population trapping in general take place. We study the functional dependance on the coupling strength of these two phenomena and show that the threshold values beyond which they become significant are different. As the coupling strength grows from zero, field localization is exhibited first.
Applications of Quantum Mechanics
2013
Quantum mechanics provides the basis for most fields of modern physics and there are many well advanced methods of practical solution of specific and topical problems
Simple non-Markovian microscopic models for the depolarizing channel of a single qubit
2012
The archetypal one-qubit noisy channels ---depolarizing, phase-damping and amplitude-damping channels--- describe both Markovian and non-Markovian evolution. Simple microscopic models for the depolarizing channel, both classical and quantum, are considered. Microscopic models which describe phase damping and amplitude damping channels are briefly reviewed.
Dynamics of spatially indistinguishable particles and quantum entanglement protection
2020
We provide a general framework which allows one to obtain the dynamics of $N$ noninteracting spatially indistinguishable particles locally coupled to separated environments. The approach is universal, being valid for both bosons and fermions and for any type of system-environment interaction. It is then applied to study the dynamics of two identical qubits under paradigmatic Markovian noises, such as phase damping, depolarizing and amplitude damping. We find that spatial indistinguishability of identical qubits is a controllable intrinsic property of the system which protects quantum entanglement against detrimental noise.
DECAY OF NONLOCALITY DUE TO ADIABATIC AND QUANTUM NOISE IN THE SOLID STATE
2010
We study the decay of quantum nonlocality, identified by the violation of the Clauser-Horne-Shimony-Holt (CHSH) Bell inequality, for two noninteracting Josephson qubits subject to independent baths with broadband spectra typical of solid state nanodevices. The bath noise can be separated in an adiabatic (low-frequency) and in a quantum (high-frequency) part. We point out the qualitative different effects on quantum nonlocal correlations induced by adiabatic and quantum noise. A quantitaive analysis is performed for typical noise figures in Josephson systems. Finally we compare, for this system, the dynamics of nonlocal correlations and of entanglement.
A new mathematical tool for an exact treatment of open quantum system dynamics
2005
A new method to obtain an operatorial exact solution of a wide class of Markovian master equations is presented. Its key point is the existence of a constant of motion partitioning the Hilbert space into finite-dimensional subspaces. The consequent possibility of representing the reduced density operator as a block diagonal matrix is shown. Each “block operator” evolves under the action of a non-unitary operator explicitly derived. Our mathematical approach is illustrated applying it to simple physical systems.
Witnessing nonclassicality through large deviations in quantum optics
2019
Non-classical correlations in quantum optics as resources for quantum computation are important in the quest for highly-specialized quantum devices. The standard way to investigate such effects relies on either the characterization of the inherent features of sources and circuits or the study of the output radiation of a given optical setup. The latter approach demands an extensive description of the output fields, but often overlooks the dynamics of the sources. Conversely, the former discards most of the information about the single trajectories, which are observed in experimental measurements. In this work we provide a natural link between the two frameworks by exploiting the thermodynam…
Geometric Optimal Control of Simple Quantum Systems
2011
International audience
Steering distillation processes through quantum Zeno dynamics
2005
A quantum system in interaction with a repeatedly measured one undergoes a nonunitary time evolution and is pushed into a subspace substantially determined by the two-system coupling. The possibility of suitably modifying such an evolution through quantum Zeno dynamics (i.e., the generalized quantum Zeno effect) addressing the system toward an a priori decided target subspace is illustrated. Applications and their possible realizations in the context of trapped ions are also discussed.