Search results for "optical depth"

showing 10 items of 77 documents

Smap-based retrieval of vegetation opacity and albedo

2020

Over land the vegetation canopy affects the microwave brightness temperature by emission, scattering and attenuation of surface soil emission. The questions addressed in this study are: 1) what is the transparency of the vegetation canopy for different biomes around the Globe at the low-frequency L-band?, 2) what is the seasonal amplitude of vegetation microwave optical depth for different biomes?, 3) what is the effective scattering at this frequency for different vegetation types?, 4) what is the impact of imprecise characterization of vegetation microwave properties on retrieval of soil surface conditions? These questions are addressed based on the recently completed one full annual cycl…

010504 meteorology & atmospheric sciencesBiome0211 other engineering and technologiesFOS: Physical sciences02 engineering and technology15. Life on landAlbedoAnnual cycle01 natural sciencesGeophysics (physics.geo-ph)Physics - GeophysicsMicrowave imaging13. Climate actionBrightness temperaturemedicineEnvironmental sciencemedicine.symptomVegetation (pathology)Water contentOptical depth021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensing2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
researchProduct

Towards a long-term dataset of ELBARA-II measurements assisting SMOS level-3 land product and algorithm validation at the Valencia Anchor Station

2015

[EN] The Soil Moisture and Ocean Salinity (SMOS) mission was launched on 2nd November 2009 with the objective of providing global estimations of soil moisture and sea salinity. The main activity of the Valencia Anchor Station (VAS) is currently to assist in a long-term validation of SMOS land products. This study focus on a level 3 SMOS data validation with in situ measurements carried out in the period 2010-2012 over the VAS. ELBARA-II radiometer is placed in the VAS area, observing a vineyard field considered as representative of a major proportion of an area of 50×50 km, enough to cover a SMOS footprint. Brightness temperatures (TB) acquired by ELBARA-II have been compared to those obser…

010504 meteorology & atmospheric sciencesMeteorologyGeography Planning and Development0211 other engineering and technologiesData validationlcsh:G1-92202 engineering and technology01 natural sciencesVineyardSoil roughnessFootprintEarth and Planetary Sciences (miscellaneous)Vegetation optical depth14. Life underwaterPrecipitationWater content021101 geological & geomatics engineering0105 earth and related environmental sciencesRadiometerHumedad del suelobrightness temperature ELBARA-II L-MEB SMOS SMOS level 3 data soil moisture soil roughness Valencia Anchor Station vegetation optical depth15. Life on landEspesor óptico de la vegetaciónTerm (time)GeographyL-MEB13. Climate actionBrightness temperatureRugosidad del sueloTemperatura de brilloSoil moistureBrightness temperaturelcsh:Geography (General)
researchProduct

PHYSICS-based retrieval of scattering albedo and vegetation optical depth using multi-sensor data integration

2017

Vegetation optical depth and scattering albedo are crucial parameters within the widely used τ-ω model for passive microwave remote sensing of vegetation and soil. A multi-sensor data integration approach using ICESat lidar vegetation heights and SMAP radar as well as radiometer data enables a direct retrieval of the two parameters on a physics-derived basis. The crucial step within the retrieval methodology is the calculus of the vegetation scattering coefficient KS, where one exact and three approximated solutions are provided. It is shown that, when using the assumption of a randomly oriented volume, the backscatter measurements of the radar provide a sufficient first order estimate and …

010504 meteorology & atmospheric sciencesScattering albedo0208 environmental biotechnologyradiometry02 engineering and technologyretrieval methodologycomputer.software_genre01 natural scienceslaw.inventionlawremote sensing by radarRadaractive-passive microwavesPhysics::Atmospheric and Oceanic PhysicsIndexespassive microwave remote sensingRemote sensingremote sensing by laser beamGeographyLidaroptical radarcrucial parametersmedicine.symptomvegetation scattering coefficientData integrationBackscattervegetation mappingta1171τ-ω modelsoilPhysics::GeophysicsICESat lidar vegetation heightsvegetationmedicineVegetation optical depthbackscatter0105 earth and related environmental sciencesRemote sensingsensor fusionRadiometerScatteringnovel multisensor approachSMAPAlbedoMulti-sensor020801 environmental engineeringradiometer dataVegetation (pathology)multisensor data integration approachcomputerICESatalbedo
researchProduct

Estimating Gravimetric Moisture of Vegetation Using an Attenuation-Based Multi-Sensor Approach

2018

Estimating parameters for global climate models via combined active and passive microwave remote sensing data has been a subject of intensive research in recent years. A variety of retrieval algorithms has been proposed for the estimation of soil moisture, vegetation optical depth and other parameters. A novel attenuation-based retrieval approach is proposed here to globally estimate the gravimetric moisture of vegetation (m g ) and retrieve information about the amount of water [kg] per amount of wet vegetation [kg]. The parameter m g is particularly interesting for agro-ecosystems, to assess the status of growing vegetation. The key feature of the proposed approach is that it relies on mu…

010504 meteorology & atmospheric sciencesgravimetric moisture0211 other engineering and technologies02 engineering and technology01 natural scienceslaw.inventionlawVegetation optical depthRadarWater contentattenuation021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingLidarRadarVegetationMoistureAttenuationMicrowave radiometerVegetationSMAPMulti-sensorLidarGravimetric analysisRadiometer
researchProduct

Modelling forest decline using SMOS soil moisture and vegetation optical depth

2018

Global change is increasing the risk of forest decline worldwide, impacting carbon and water cycles. Hence, there is an urgent need for predicting forest decline occurrence. To that purpose, this study links forest decline events in Catalonia, detected by the DEBOSCAT forest monitoring program, with information from the Soil Moisture and Ocean Salinity (SMOS) satellite. Firstly, this study reviews the role of the SMOS soil moisture in a previous forest decline episode occurred in 2012, where the authors concluded that dry soils increased the probability of observing decline in broadleaved forests. Secondly, the present study detects that forest decline in 2012 and 2016 was linked to very dr…

0106 biological sciences010504 meteorology & atmospheric sciencesArtificial satellites in navigationClimate changeGlobal change010603 evolutionary biology01 natural sciencesMonitoring programForest declineSalinitySatèl·lits artificials en navegacióHydric soil:Enginyeria de la telecomunicació::Radiocomunicació i exploració electromagnètica::Teledetecció [Àrees temàtiques de la UPC]Soil waterEnvironmental scienceClimate changeVegetation optical depthPhysical geography:Enginyeria de la telecomunicació::Radiocomunicació i exploració electromagnètica::Satèl·lits i ràdioenllaços [Àrees temàtiques de la UPC]Soil moistureSòls -- HumitatWater cycleWater content0105 earth and related environmental sciencesSMOS
researchProduct

Comparison between SMOS Vegetation Optical Depth products and MODIS vegetation indices over crop zones of the USA

2014

The Soil Moisture and Ocean Salinity (SMOS) mission provides multi-angular, dual-polarised brightness temperatures at 1.4 GHz, from which global soil moisture and vegetation optical depth (tau) products are retrieved. This paper presents a study of SMOS' tau product in 2010 and 2011 for crop zones of the USA. Retrieved tau values for 504 crop nodes were compared to optical/IR vegetation indices from the MODES (Moderate Resolution Imaging Spectroradiometer) satellite sensor, including the Normalised Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVE), Leaf Area Index (LAI), and a Normalised Difference Water Index (NOW!) product. tau values were observed to increase during the…

2. Zero hunger010504 meteorology & atmospheric sciences0211 other engineering and technologiesSoil ScienceGrowing seasonGeology02 engineering and technologyVegetationEnhanced vegetation index01 natural sciencesNormalized Difference Vegetation Indexvegetation optical depthLinear regressionEnvironmental scienceL-band radiometryModerate-resolution imaging spectroradiometerComputers in Earth SciencesLeaf area indexoptical vegetation indices[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingWater contentSMOS021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingRemote Sensing of Environment
researchProduct

Description of atmospheric conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS)

2012

Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malargüe and averaged monthly models, the utility of the GDAS data is shown.

AstronomyAtmospheric modelAtmospheric monitoringAtmospheric sciencesCosmic Rays Shower01 natural scienceslaw.inventionData assimilationlawcosmic rays; extensive air showers; atmospheric monitoring; atmospheric modelsDEPENDENCEATMOSFERA (OBSERVAÇÃO)TEMPERATUREPhysics::Atmospheric and Oceanic PhysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)[PHYS]Physics [physics]Cascada atmosférica extensaOPTICAL DEPTH[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astrophysics::Instrumentation and Methods for AstrophysicsPierre Auger ObservatoryAtmospheric temperatureRadiación cósmicaAtmosphere of EarthComputingMethodologies_DOCUMENTANDTEXTPROCESSINGRadiosondeFísica nuclearREFRACTIVE-INDEXAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]MeteorologyAtmospheric MonitoringAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic Rays ShowersEXTENSIVE AIR-SHOWERSCosmic RayAtmósferaWeather stationAtmospheric models0103 physical sciencesExtensive air showers010306 general physicsCosmic raysDETECTORCiencias ExactasPierre Auger ObservatoryAtmospheric models010308 nuclear & particles physicsFísicaAstronomy and Astrophysics13. Climate actionExperimental High Energy PhysicsEMISSION[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

X-ray spectroscopy of the ADC source X1822-371 with Chandra and XMM-Newton

2012

The eclipsing low-mass X-ray binary X1822-371 is the prototype of the accretion disc corona (ADC) sources. We analyse two Chandra observations and one XMM-Newton observation to study the discrete features and their variation as a function of the orbital phase, deriving constraints on the temperature, density, and location of the plasma responsible for emission lines. The HETGS and XMM/Epic-pn observed X1822-371 for 140 and 50 ks, respectively. We extracted an averaged spectrum and five spectra from five selected orbital-phase intervals that are 0.04-0.25, 0.25-0.50, 0.50-0.75, 0.75-0.95, and, finally, 0.95-1.04; the orbital phase zero corresponds to the eclipse time. All spectra cover the e…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSpectral lineidentification line: formation stars: individual: X1822-371 X-rays: binaries X-rays: general [line]Settore FIS/05 - Astronomia E Astrofisica0103 physical sciencesOptical depth (astrophysics)line: identification line: formation stars: individual: X1822-371 X-rays: binaries X-rays: generalEmission spectrum010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsLine (formation)High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsLine-of-sight010308 nuclear & particles physicsResonanceAstronomy and AstrophysicsRadiusCoronaSpace and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Air traffic and contrail changes during COVID-19 over Europe: A model study

2021

The strong reduction of air traffic during the COVID-19 pandemic provides a test case for the relation between air traffic density, contrails, and their radiative forcing of climate change. Air traffic and contrail cirrus changes are quantified for a European domain for March to August 2020 and compared to the same period in 2019. Traffic data show a 72 % reduction in flight distance compared with 2019. This paper investigates the induced contrail changes in a model study. The contrail model results depend on various methodological details tested in parameter studies. In the reference case, the reduced traffic caused an even stronger reduction in contrail length, partly because the w…

AtmosphereLongwaveEnvironmental scienceCirrusForcing (mathematics)Radiative forcingAtmospheric sciencesShortwaveWater vaporOptical depth
researchProduct

2021

Abstract. The strong reduction of air traffic during the COVID-19 pandemic provides a unique test case for the relationship between air traffic density, contrails, and their radiative forcing of climate change. Here, air traffic and contrail cirrus changes are quantified for a European domain for March to August 2020 and compared to the same period in 2019. Traffic data show a 72 % reduction in flight distance compared with 2019. This paper investigates the induced contrail changes in a model study. The contrail model results depend on various methodological details as discussed in parameter studies. In the reference case, the reduced traffic caused a reduction in contrail length. The reduc…

Atmospheric Science010504 meteorology & atmospheric sciencesLongwaveForcing (mathematics)010501 environmental sciencesRadiative forcingAtmospheric sciences01 natural sciencesAtmosphereEnvironmental scienceCirrusShortwaveOptical depthWater vapor0105 earth and related environmental sciencesAtmospheric Chemistry and Physics
researchProduct