Search results for "optical depth"

showing 10 items of 77 documents

A new BeppoSAX observation of the Z Source GX 349+2

2004

Abstract We report on the results from two BeppoSAX observations of the Z source GX 349+2 performed in February 2001 and covering the broad energy range 0.12–200 keV. The average spectrum is well described by a soft blackbody (kTBB∼0.5 keV) and a Comptonized component having a seed-photon temperature of kT0∼1 keV, an electron temperature of kTe∼2.7 keV, and optical depth τ∼11. To well fit the energy spectrum three gaussian lines are needed at 1.2 keV, 2.6 keV, and 6.7 keV with corresponding equivalent widths of 13 eV, 10 eV, and 39 eV, probably associated to L-shell emission of Fe XXIV, Lyα S XVI, and Fe XXV, respectively. These lines may be produced at different distances from the neutron …

PhysicsNuclear and High Energy PhysicsRange (particle radiation)Astrophysics::High Energy Astrophysical PhenomenaAstrophysicsAtomic and Molecular Physics and OpticsSpectral lineNeutron starAbsorption edgeOptical depth (astrophysics)Electron temperatureBlack-body radiationAtomic physicsZ source
researchProduct

The Nature of Soft Excess in ESO 362-G18 Revealed by XMM-Newton and NuSTAR Spectroscopy

2021

We present a detailed spectral analysis of the joint XMM-Newton and NuSTAR observations of the active galactic nuclei (AGN) in the Seyfert 1.5 Galaxy ESO 362-G18. The broadband ($0.3\mbox{--}79$ keV) spectrum shows the presence of a power-law continuum with a soft excess below $2$ keV, iron K$\alpha$ emission ($\sim 6.4$ keV), and a Compton hump (peaking at $\sim 20$ keV). We find that the soft excess can be modeled by two different possible scenarios: a warm ($kT_\mathrm{e}\sim0.2$ keV) and optically thick ($\tau\sim34$) Comptonizing corona; or with relativistically-blurred reflection off a high-density ($\log{[n_\mathrm{e}/\mathrm{cm}^{-3}]}>18.3$) inner disk. These two models cannot be e…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)X-ray astronomySupermassive black holeActive galactic nucleus010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesGalaxyBlack holeCorona (optical phenomenon)Space and Planetary Science0103 physical sciencesOptical depth (astrophysics)Astrophysics::Solar and Stellar AstrophysicsContinuum (set theory)Astrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciences
researchProduct

On the Spectral Evolution of Cygnus X-2 along its Color-Color Diagram

2002

We report on the results of a broad band (0.1-200 keV) spectral study of Cyg X-2 using two BeppoSAX observations taken in 1996 and 1997, respectively, for a total effective on-source time of ~100 ks. The color-color (CD) and hardness-intensity (HID) diagrams show that the source was in the horizontal branch (HB) and normal branch (NB) during the 1996 and 1997 observation, respectively. Five spectra were selected around different positions of the source in the CD/HID, two in the HB and three in the NB. These spectra are fit to a model consisting of a disk blackbody, a Comptonization component, and two Gaussian emission lines at ~1 keV and ~6.6 keV, respectively. The addition of a hard power-…

PhysicsAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)FOS: Physical sciencesAstronomy and AstrophysicsColor–color diagramAstrophysicsRadiusHorizontal branchaccretion accretion disks / stars: individual: Cyg X–2 / stars: neutron / X-rays: stars / X-rays: binaries / X-rays: generalAstrophysicsSpectral lineLuminosityNOaccretionSpace and Planetary ScienceOptical depth (astrophysics)accretion disks / stars: individual: Cyg X–2 / stars: neutron / X-rays: stars / X-rays: binaries / X-rays: generalElectron temperatureEmission spectrum
researchProduct

Spectral Evolution of Circinus X-1 along Its Orbit

2001

We report on the spectral analysis of Circinus X-1 observed by the ASCA satellite in March 1998 along one orbital period. The luminosity of the source (in the 0.1-100 keV band) ranges from $2.5 \times 10^{38}$ erg s$^{-1}$ at the periastron (orbital phase 0.01) to $1.5 \times 10^{38}$ erg s$^{-1}$ at orbital phase 0.3. From the spectral analysis and the lightcurve we argue that Cir X-1 shows three states along the orbital evolution. The first state is at the orbital phase interval 0.97-0.3: the luminosity becames super-Eddington and a strong flaring activity is present. In this state a shock could form in the inner region of the system due to the super-Eddington accretion rate, producing an…

PhysicsAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)Phase (waves)FOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsCompact starOrbital periodAstrophysicsLuminosityOrbitAbsorption edgeSpace and Planetary ScienceOptical depth (astrophysics)Astrophysics::Solar and Stellar AstrophysicsCircinusAstrophysics::Earth and Planetary AstrophysicsAstrophysics::Galaxy AstrophysicsAstrophysical Journal
researchProduct

First Retrievals of ASCAT-IB VOD (Vegetation Optical Depth) at Global Scale

2021

Global and long-term vegetation optical depth (VOD) dataset are very useful to monitor the dynamics of the vegetation features, climate and environmental changes. In this study, the radar-based global ASCAT (Advanced SCATterometer) IB (INRAE-BORDEAUX) VOD was retrieved using a model which was recently calibrated over Africa. In order to assess the performance of IB VOD, the Saatchi biomass and three other VOD datasets (ASCAT V16, AMSR2 LPRM V5 and VODCA LPRM V6) derived from C-band observations were used in the comparison. The preliminary results show that IB VOD has a promising ability to predict biomass $(\mathrm{R}=0.74,\ \text{RMSE} =44.82\ \text{Mg}\ \text{ha}^{-1})$ , which is better …

Vegetation optical depth010504 meteorology & atmospheric sciencesvegetation mapping0211 other engineering and technologiesScale (descriptive set theory)02 engineering and technology01 natural sciencesCombinatoricsremote sensingvegetationoptical sensorC-bandComputingMilieux_MISCELLANEOUSattenuation021101 geological & geomatics engineering0105 earth and related environmental sciencesMathematicsprediction algorithmbiomassOrder (ring theory)15. Life on landPrediction algorithmsASCAT13. Climate action[SDE]Environmental SciencesVegetation optical DepthScatterometerBiomedical optical imagingRadar Measurement
researchProduct

The Influence of the Size of the Sun on the Sky Light Distribution

1968

PhysicsDistribution (number theory)Scatteringbusiness.industryMaterials Science (miscellaneous)media_common.quotation_subjectDiffuse sky radiationSolar energyIndustrial and Manufacturing EngineeringOpticsSkySky brightnessBusiness and International ManagementbusinessOptical depthmedia_commonApplied Optics
researchProduct

X-ray optical depth diagnostics of T Tauri accretion shocks

2009

In classical T Tauri stars, X-rays are produced by two plasma components: a hot low-density plasma, with frequent flaring activity, and a high-density lower temperature plasma. The former is coronal plasma related to the stellar magnetic activity. The latter component, never observed in non-accreting stars, could be plasma heated by the shock formed by the accretion process. However its nature is still being debated. Our aim is to probe the soft X-ray emission from the high-density plasma component in classical T Tauri stars to check whether this is plasma heated in the accretion shock or whether it is coronal plasma. High-resolution X-ray spectroscopy allows us to measure individual line f…

PhysicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsPlasmastars: atmospheres stars: coronae stars: pre-main sequence techniques: spectroscopic X-rays: starsAccretion (astrophysics)Spectral lineT Tauri starStarsSettore FIS/05 - Astronomia E AstrofisicaAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencePhysics::Space PhysicsTW HydraeAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsSpectroscopyOptical depthAstrophysics::Galaxy AstrophysicsSolar and Stellar Astrophysics (astro-ph.SR)
researchProduct

A combined optical-microwave method to retrieve soil moisture over vegetated areas

2011

A simple approach for correcting for the effect of vegetation in the estimation of the surface soil moisture (wS) from L-band passive microwave observations is presented in this study. The approach is based on semi-empirical relationships between soil moisture and the polarized reflectivity including the effect of the vegetation optical depth which is parameterized as a function of the normalized vegetation difference index (NDVI). The method was tested against in situ measurements collected over a grass site from 2004 to 2007 (SMOSREX experiment). Two polarizations (horizontal/vertical) and five incidence angles (20◦, 30◦, 40◦, 50◦, and 60◦) were considered in the analysis. The best wS est…

Vegetation optical depthL band010504 meteorology & atmospheric sciencesNDVItélédétection0211 other engineering and technologiesSoil science02 engineering and technologyMicrowave methodsurface temperature01 natural sciencesNormalized Difference Vegetation Index[SDV.EE.ECO]Life Sciences [q-bio]/Ecology environment/EcosystemsNDVI;LAI;LEAF AREA INDEX;SURFACE TEMPERATURE;SOIL MOISTURE;L-BAND medicineTraitement du signal et de l'imagenormalized vegetation difference index (NDVI)Electrical and Electronic EngineeringWater contentComputingMilieux_MISCELLANEOUS021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingSignal and Image processingsurface temperature.soil moisture (SM)Enhanced vegetation index15. Life on landLAIL-bandSOIL MOISTUREGeneral Earth and Planetary SciencesEnvironmental sciencemicrowave radiometrymedicine.symptomLEAF AREA INDEXVegetation (pathology)[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingMicrowave
researchProduct

Warm dark matter and the ionization history of the Universe

2017

In warm dark matter scenarios structure formation is suppressed on small scales with respect to the cold dark matter case, reducing the number of low-mass halos and the fraction of ionized gas at high redshifts and thus, delaying reionization. This has an impact on the ionization history of the Universe and measurements of the optical depth to reionization, of the evolution of the global fraction of ionized gas and of the thermal history of the intergalactic medium, can be used to set constraints on the mass of the dark matter particle. However, the suppression of the fraction of ionized medium in these scenarios can be partly compensated by varying other parameters, as the ionization effic…

PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Cold dark matter010308 nuclear & particles physicsHot dark matterScalar field dark matterFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics7. Clean energy01 natural sciencesHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)13. Climate action0103 physical sciencesMixed dark matterOptical depth (astrophysics)Warm dark matter010303 astronomy & astrophysicsReionizationLight dark matterAstrophysics::Galaxy AstrophysicsAstrophysics - Cosmology and Nongalactic AstrophysicsPhysical Review D
researchProduct

SMOS-IC: An Alternative SMOS Soil Moisture and Vegetation Optical Depth Product

2017

© 2017 by the authors. The main goal of the Soil Moisture and Ocean Salinity (SMOS) mission over land surfaces is the production of global maps of soil moisture (SM) and vegetation optical depth (τ) based on multi-angular brightness temperature (TB) measurements at L-band. The operational SMOS Level 2 and Level 3 soil moisture algorithms account for different surface effects, such as vegetation opacity and soil roughness at 4 km resolution, in order to produce global retrievals of SM and τ. In this study, we present an alternative SMOS product that was developed by INRA (Institut National de la Recherche Agronomique) and CESBIO (Centre d'Etudes Spatiales de la BIOsphère). One of the main go…

environmental_sciencesL bandVegetation optical depth010504 meteorology & atmospheric sciencesNDVI[SDV]Life Sciences [q-bio]Science0211 other engineering and technologiesWeather forecasting0207 environmental engineeringSoil science02 engineering and technologycomputer.software_genre01 natural sciencesSMOS; L-band; Level 3; ECMWF; SMOS-IC; soil moisture; vegetation optical depth; MODIS; NDVINormalized Difference Vegetation IndexECMWFvegetation optical depthtempératurehumidité du solluminosity14. Life underwater020701 environmental engineeringWater content021101 geological & geomatics engineeringRemote sensing0105 earth and related environmental sciencessalinité des océansQBiosphereluminositéVegetationAlbedoL-bandSpectroradiometerMODIS13. Climate actionBrightness temperatureProduct (mathematics)General Earth and Planetary SciencesEnvironmental sciencesoil moistureSMOS;L-band;level 3;ECMWF;SMOS-IC;soil moisture;vegetation optical depth;MODIS;NDVISMOS-ICcomputerLevel 3SMOSRemote Sensing
researchProduct