Search results for "organotypic"

showing 6 items of 6 documents

Tangential Intrahypothalamic Migration of the Mouse Ventral Premamillary Nucleus and Fgf8 Signaling

2021

The tuberal hypothalamic ventral premamillary nucleus (VPM) described in mammals links olfactory and metabolic cues with mating behavior and is involved in the onset of puberty. We offer here descriptive and experimental evidence on a migratory phase in the development of this structure in mice at E12.5–E13.5. Its cells originate at the retromamillary area (RM) and then migrate tangentially rostralward, eschewing the mamillary body, and crossing the molecularly distinct perimamillary band, until they reach a definitive relatively superficial ventral tuberal location. Corroborating recent transcriptomic studies reporting a variety of adult glutamatergic cell types in the VPM, and different p…

0301 basic medicineCell typeQH301-705.5organotypic culturesBiologyFgf8Cell and Developmental Biologydorsal premamillary nucleus (DPM)03 medical and health sciencesGlutamatergic0302 clinical medicineFGF8neuronal tangential migrationmedicinehypothalamusBiology (General)Original ResearchEmbryoCell BiologyMamillary Bodyventral premamillary nucleus (VPM)retromamillary area (RM)Subthalamic nucleus030104 developmental biologymedicine.anatomical_structureHypothalamusembryonic structuresperimamillary bandNeuroscienceNucleus030217 neurology & neurosurgeryDevelopmental BiologyFrontiers in Cell and Developmental Biology
researchProduct

NMDA Receptors Regulate the Structural Plasticity of Spines and Axonal Boutons in Hippocampal Interneurons

2017

N-methyl-D-aspartate receptors (NMDARs) are present in both pyramidal neurons and interneurons of the hippocampus. These receptors play an important role in the adult structural plasticity of excitatory neurons, but their impact on the remodeling of interneurons is unknown. Among hippocampal interneurons, somatostatin-expressing cells located in the stratum oriens are of special interest because of their functional importance and structural characteristics: they display dendritic spines, which change density in response to different stimuli. In order to understand the role of NMDARs on the structural plasticity of these interneurons, we have injected acutely MK-801, an NMDAR antagonist, to …

0301 basic medicineDendritic spineorganotypic culturesEn passantHippocampusHippocampal formationBiologyspine dynamicslcsh:RC321-57103 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineReceptorlcsh:Neurosciences. Biological psychiatry. NeuropsychiatryOriginal ResearchMK-801interneuronsmusculoskeletal neural and ocular physiologyaxonal boutonsNMDARSpine (zoology)030104 developmental biologynervous systemExcitatory postsynaptic potentialNMDA receptorNeuroscience030217 neurology & neurosurgeryNeuroscienceFrontiers in Cellular Neuroscience
researchProduct

Differential Superiority of Heavy Charged-Particle Irradiation to X-Rays: Studies on Biological Effectiveness and Side Effect Mechanisms in Multicell…

2016

This review is focused on the radiobiology of carbon ions compared to X-rays using multicellular models of tumors and normal mucosa. The first part summarizes basic radiobiological effects, as observed in cancer cells. The second, more clinically oriented part of the review, deals with radiation-induced cell migration and mucositis. Multicellular spheroids from V79 hamster cells were irradiated with X-rays or carbon ions under ambient or restricted oxygen supply conditions. Reliable oxygen enhancement ratios could be derived to be 2.9, 2.8, and 1.4 for irradiation with photons, (12)C(+6) in the plateau region, and (12)C(+6) in the Bragg peak, respectively. Similarly, a relative biological e…

0301 basic medicinePathologymedicine.medical_specialtyCancer Researchcell migrationMotilityReviewBiologylcsh:RC254-28203 medical and health sciences0302 clinical medicinerelative biological effectivenessRadioresistancemedicineRelative biological effectivenessorganotypic tumor and mucosa culturesparticle irradiationCell migrationOxygen enhancement ratio (OER)lcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensrelative biological effectiveness (RBE)030104 developmental biologymucositisOncologyradiobiologyCell cultureApoptosis030220 oncology & carcinogenesisCancer cellOxygen enhancement ratioBiophysicsoxygen enhancement ratioFrontiers in Oncology
researchProduct

Fructose-1,6-Bisphosphate Protects Hippocampal Rat Slices from NMDA Excitotoxicity

2019

Effects of fructose 1,6-bisphosphate (F-1,6-P2) towards N-methyl-d-aspartate NMDA excitotoxicity were evaluated in rat organotypic hippocampal brain slice cultures (OHSC) challenged for 3 h with 30 &mu

Fructose 16-bisphosphateExcitotoxicityFructose-bisphosphate aldolaseorganotypic hippocampal brainslice culturesmedicine.disease_causeHippocampuslcsh:Chemistrychemistry.chemical_compoundenergymetabolismFructose-Bisphosphate Aldolaseenergy metabolismfructose-16-bisphosphatelcsh:QH301-705.5Spectroscopy<i>N</i>-methyl-<span style="font-variant: small-caps">d</span>-aspartatebiologyChemistryorganotypic hippocampal brain slice culturesGlyceraldehyde-3-Phosphate DehydrogenasesGeneral MedicineComputer Science ApplicationsFructose-BisphosphataseNeuroprotective AgentsNMDA receptorexcitotoxicityPhosphofructokinaseN-methyl-d-aspartatemedicine.medical_specialtyN-MethylaspartateFructose 16-bisphosphataseCatalysisArticleInorganic ChemistryNecrosisInternal medicinemitochondrial dysfunctionmedicineAnimalsPhysical and Theoretical ChemistryRats WistarMolecular BiologySettore BIO/10 - BIOCHIMICAOrganic ChemistryAldolase AMetabolismPurine NucleosidesRatsEndocrinologylcsh:Biology (General)lcsh:QD1-999Phosphofructokinases6-bisphosphatebiology.proteinfructose-1; 6-bisphosphate; N-methyl-d-aspartate; excitotoxicity; energymetabolism; mitochondrial dysfunction; organotypic hippocampal brainslice culturesfructose-1
researchProduct

Preservation of glial cytoarchitecture from ex vivo human tumor and non-tumor cerebral cortical explants: A human model to study neurological diseases

2007

For the human brain, in vitro models that accurately represent what occurs in vivo are lacking. Organotypic models may be the closest parallel to human brain tissue outside of a live patient. However, this model has been limited primarily to rodent-derived tissue. We present an organotypic model to maintain intraoperatively collected human tumor and non-tumor explants ex vivo for a prolonged period of time (similar to 11 days) without any significant changes to the tissue cytoarchitecture as evidenced through immunohistochemistry and electron microscopy analyses. The ability to establish and reliably predict the cytoarchitectural changes that occur with time in an organotypic model of tumor…

Pathologymedicine.medical_specialtyIndolesTime FactorsbrainMatrix (biology)BiologyModels BiologicalStatistics NonparametricArticleOrgan Culture TechniquesMicroscopy Electron TransmissionIn vivoGlial Fibrillary Acidic ProteinmedicineHumanshumanorganotypicCerebral Cortexelectron microscopyBrain NeoplasmsGeneral NeuroscienceexplantReproducibility of ResultsCell migrationHuman brainMiddle AgedImmunohistochemistrymedicine.anatomical_structureCytoarchitectureImmunohistochemistryFemaleTissue PreservationNervous System DiseasesNeurogliaEx vivoExplant culture
researchProduct

Photoreceptor vitality in organotypic cultures of mature vertebrate retinas validated by light-dependent molecular movements

2006

AbstractVertebrate photoreceptor cells are polarized neurons highly specialized for light absorption and visual signal transduction. Photoreceptor cells consist of the light sensitive outer segment and the biosynthetic active inner segment linked by a slender connecting cilium. The function of mature photoreceptor cells is strictly dependent on this compartmentalization which is maintained in the specialized retinal environment. To keep this fragile morphologic and functional composition for further cell biological studies and treatments we established organotypic retina cultures of mature mice and Xenopus laevis. The organotypic retina cultures of both model organisms are created as co-cul…

Photoreceptorsgenetic structuresMouseXenopusCellved/biology.organism_classification_rank.speciesXenopusGene deliverySignal transductionRetinaMicechemistry.chemical_compoundOrgan Culture TechniquesOrganotypic retina cultureIn Situ Nick-End LabelingmedicineAnimalsPhotoreceptor CellsTransducinModel organismVision OcularRetinaArrestinbiologyved/biologyRetinalbiology.organism_classificationLight-dependent movementsSensory Systemseye diseasesCell biologyMice Inbred C57BLProtein TransportOphthalmologymedicine.anatomical_structureMicroscopy FluorescencechemistryCell cultureVertebratesTransducinsense organsPhotic StimulationVision Research
researchProduct