Search results for "otos"

showing 10 items of 857 documents

Three-dimensional crystallization of the light-harvesting complex from Mantoniella squamata (Prasinophyceae) requires an adequate purification proced…

1995

Abstract We present a new purification procedure for the light-harvesting complex of Mantoniella squamata whereupon three-dimensional crystallization succeeded. Previous purification methods were based on density centrifugations as the only separating principle. We have extended this preparation procedure by applying anion-exchange and molecular-sieve chromatography techniques. Purity and stability of the complex were proved by denaturing and non-denaturing polyacrylamide-gel electrophoresis, and spectroscopic measurements. With respect to contaminating lipids the purified pigment-protein complex was examined by thin-layer chromatography and the aggregation and/or oligomeric states were inv…

(M. squamata)ChromatographybiologyChemistryPrasinophyceaeSize-exclusion chromatographyAnalytical chemistryBiophysicsCell Biologybiology.organism_classificationMicelleFluorescenceBiochemistrylaw.inventionLight-harvesting complexElectrophoresislawMembrane proteinPhotosynthesisLight-harvesting complexElectron microscopeCrystallizationThree-dimensional crystallizationBiochimica et Biophysica Acta (BBA) - Bioenergetics
researchProduct

N,N′-Disubstituted Indigos as Readily Available Red-Light Photoswitches with Tunable Thermal Half-Lives

2017

Some rare indigo derivatives have been known for a long time to be photochromic upon irradiation with red light, which should be advantageous for many applications. However, the absence of strategies to tune their thermal half-lives by modular molecular design as well as the lack of proper synthetic methods to prepare a variety of such molecules from the parent indigo dye have so far precluded their use. In this work, several synthetic protocols for N-functionalization have been developed, and a variety of N-alkyl and N-aryl indigo derivatives have been prepared. By installation of electron-withdrawing substituents on the N-aryl moieties, the thermal stability of the Z-isomers could be enha…

010405 organic chemistryChemistryIndigos photoswitchesIndigo dyeGeneral Chemistry010402 general chemistryPhotochemistry01 natural sciencesBiochemistryCatalysisIndigo0104 chemical sciencesPhotochromismchemistry.chemical_compoundColloid and Surface ChemistryThermal[CHIM]Chemical SciencesMoleculeOrganic chemistryThermal stabilityIrradiationAbsorption (electromagnetic radiation)Journal of the American Chemical Society
researchProduct

Down-Scaling Modis Vegetation Products with Landsat GAP Filled Surface Reflectance in Google Earth Engine

2020

High spatial resolution vegetation products are fundamental in different fields, such as improving the understanding of crop seasonality at regional scales. Here, two new vegetation products such as the Leaf Area Index (LAI) and the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) are downscaled at continental scales. A novel HIghly Scalable Temporal Adaptive Reflectance Fusion Model (HIS-TARFM) is used to generate the gap-free time series of Landsat surface reflectance data by fusing MODIS and Landsat reflectance for the contiguous United States. An artificial neural network is trained to capture the relationship between the gap free Landsat surface reflectance and the MODI…

010504 meteorology & atmospheric sciences0208 environmental biotechnology02 engineering and technologyDown scalingVegetationSeasonalitymedicine.disease01 natural sciencesReflectivity020801 environmental engineeringPhotosynthetically active radiationHigh spatial resolutionmedicineEnvironmental scienceLeaf area indexImage resolution0105 earth and related environmental sciencesRemote sensingIGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium
researchProduct

Linking photosynthesis and sun-induced fluorescence at sub-daily to seasonal scales

2018

Abstract Due to its close link to the photosynthetic process, sun-induced chlorophyll fluorescence (F) opens new possibilities to study dynamics of photosynthetic light reactions and to quantify CO2 assimilation rates. Although recent studies show that F is linearly related to gross primary production (GPP) on coarse spatial and temporal scales, it is argued that this relationship may be mainly driven by seasonal changes in absorbed photochemical active radiation (APAR) and less by the plant light use efficiency (LUE). In this work a high-resolution spectrometer was used to continuously measure red and far-red fluorescence and different reflectance indices within a sugar beet field during t…

010504 meteorology & atmospheric sciencesEconomicsPhotochemical reflectance index0211 other engineering and technologiesEddy covarianceGrowing seasonSoil Science02 engineering and technologyPhotochemical Reflectance IndexPhotosynthesisAtmospheric sciences01 natural sciencesFluorescence yieldSun-induced chlorophyll fluorescencemedicineddc:550Computers in Earth SciencesChlorophyll fluorescenceBiology021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingLight use efficiencyPhysicsDiurnal temperature variationPrimary productionGeologySeasonalitymedicine.diseaseChemistryEngineering sciences. Technology
researchProduct

Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress

2019

Remote sensing of solar-induced chlorophyll fluorescence (SIF) is a rapidly advancing front in terrestrial vegetation science, with emerging capability in space-based methodologies and diverse application prospects. Although remote sensing of SIF – especially from space – is seen as a contemporary new specialty for terrestrial plants, it is founded upon a multi-decadal history of research, applications, and sensor developments in active and passive sensing of chlorophyll fluorescence. Current technical capabilities allow SIF to be measured across a range of biological, spatial, and temporal scales. As an optical signal, SIF may be assessed remotely using high-resolution spectral sensors in …

010504 meteorology & atmospheric sciencesFIS/06 - FISICA PER IL SISTEMA TERRA E PER IL MEZZO CIRCUMTERRESTRE0208 environmental biotechnologySoil ScienceReview02 engineering and technologyPhotochemical Reflectance Index01 natural sciencesArticleGEO/11 - GEOFISICA APPLICATASIF retrieval methodsRadiative transfer modellingRadiative transfer910 Geography & travelComputers in Earth SciencesChlorophyll fluorescence1111 Soil Science1907 GeologyAirborne instruments0105 earth and related environmental sciencesRemote sensingStress detectionGEO/12 - OCEANOGRAFIA E FISICA DELL'ATMOSFERA1903 Computers in Earth SciencesPrimary productionGeologyVegetationPassive optical techniquesField (geography)020801 environmental engineeringGEO/10 - GEOFISICA DELLA TERRA SOLIDA10122 Institute of GeographySun-induced fluorescenceRemote sensing (archaeology)Sun-induced fluorescence Steady-state photosynthesis Stress detection Radiative transfer modelling SIF retrieval methods. Satellite sensors Airborne instruments Applications Terrestrial vegetation Passive optical techniques. ReviewApplicationsTerrestrial vegetationEnvironmental scienceSatelliteSteady-state photosynthesisSatellite sensors
researchProduct

A tale of two emergences: Sunrise II observations of emergence sites in a solar active region

2017

R. Centeno et. al.

010504 meteorology & atmospheric sciencesField (physics)photosphere [Sun]Field lineFOS: Physical sciencesFluxchromosphere [Sun]Astrophysicspolarimetric [Techniques]01 natural sciences0103 physical sciencesSunrise010303 astronomy & astrophysicsChromosphereSun: magnetic fieldsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesPhysicsSunspotsSun: chromosphereTechniques: polarimetricSun: photosphereAstronomy and AstrophysicsMagnetic reconnectionMagnetic fluxMagnetic fieldmagnetic fields [Sun]Astrophysics - Solar and Stellar AstrophysicsSpace and Planetary Science
researchProduct

Quantifying vegetation biophysical variables from the Sentinel-3/FLEX tandem mission: Evaluation of the synergy of OLCI and FLORIS data sources

2020

The ESA’s forthcoming FLuorescence EXplorer (FLEX) mission is dedicated to the global monitoring of the vegetation’s chlorophyll fluorescence by means of an imaging spectrometer, FLORIS. In order to properly interpret the fluorescence signal in relation to photosynthetic activity, essential vegetation variables need to be retrieved concomitantly. FLEX will fly in tandem with Sentinel-3 (S3), which conveys the Ocean and Land Colour Instrument (OLCI) that is designed to characterize the atmosphere and the terrestrial vegetation at a spatial resolution of 300 m. In this work we present the retrieval models of four essential biophysical variables: (1) Leaf Area Index (LAI), (2) leaf chlorophyll…

010504 meteorology & atmospheric sciencesMean squared error0208 environmental biotechnologyImaging spectrometerSoil ScienceGeology02 engineering and technologyVegetationSpectral bands15. Life on land01 natural sciencesArticle020801 environmental engineeringPhotosynthetically active radiationKrigingEnvironmental scienceComputers in Earth SciencesLeaf area indexImage resolution0105 earth and related environmental sciencesRemote sensingRemote Sensing of Environment
researchProduct

Potential of Automated Digital Hemispherical Photography and Wireless Quantum Sensors for Routine Canopy Monitoring and Satellite Product Validation

2021

To better characterize the temporal dynamics of vegetation biophysical variables, a variety of automated in situ measurement techniques have been developed in recent years. In this study, we investigated automated digital hemispherical photography (DHP) and wireless quantum sensors, which were installed at two sites under the Copernicus Ground Based Observations for Validation (GBOV) project. Daily estimates of plant area index (PAI) and the fraction of absorbed photosynthetically active radiation (FAPAR) were obtained, which realistically described expected vegetation dynamics. Good correspondence with manual DHP and LAI-2000 data (RMSE = 0.39 to 0.90 for PAI, RMSE = 0.07 for FAPAR) provid…

010504 meteorology & atmospheric sciencesMean squared errorHemispherical photographyPhotographyQuantum sensor0211 other engineering and technologies02 engineering and technologyVegetation01 natural sciencesPhotosynthetically active radiationEnvironmental scienceSatelliteWireless sensor network021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensing2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS
researchProduct

Spectropolarimetric evidence for a siphon flow along an emerging magnetic flux tube

2016

©2017 The American Astronomical Society. All rights reserved.We study the dynamics and topology of an emerging magnetic flux concentration using high spatial resolution spectropolarimetric data acquired with the Imaging Magnetograph eXperiment on board the sunrise balloon-borne solar observatory. We obtain the full vector magnetic field and the line of sight (LOS) velocity through inversions of the Fe i line at 525.02 nm with the SPINOR code. The derived vector magnetic field is used to trace magnetic field lines. Two magnetic flux concentrations with different polarities and LOS velocities are found to be connected by a group of arch-shaped magnetic field lines. The positive polarity footp…

010504 meteorology & atmospheric sciencesPolarity (physics)photosphere [Sun]FOS: Physical sciencesAstrophysicspolarimetric [Techniques]01 natural sciencesMethods: observational0103 physical sciencesSunriseAstrophysics::Solar and Stellar Astrophysicsobservational [Methods]010303 astronomy & astrophysicsSun: magnetic fieldsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesLine (formation)PhysicsSolar observatoryPolarity symbolsTechniques: polarimetricSun: photosphereAstronomy and AstrophysicsMagnetic fluxMagnetic fieldAstrophysics - Solar and Stellar AstrophysicsFlow (mathematics)magnetic fields [Sun]Space and Planetary Science
researchProduct

Radiance-based NIRv as a proxy for GPP of corn and soybean

2020

Abstract Substantial uncertainty exists in daily and sub-daily gross primary production (GPP) estimation, which dampens accurate monitoring of the global carbon cycle. Here we find that near-infrared radiance of vegetation (NIRv,Rad), defined as the product of observed NIR radiance and normalized difference vegetation index, can accurately estimate corn and soybean GPP at daily and half-hourly time scales, benchmarked with multi-year tower-based GPP at three sites with different environmental and irrigation conditions. Overall, NIRv,Rad explains 84% and 78% variations of half-hourly GPP for corn and soybean, respectively, outperforming NIR reflectance of vegetation (NIRv,Ref), enhanced vege…

010504 meteorology & atmospheric sciencesRenewable Energy Sustainability and the EnvironmentPublic Health Environmental and Occupational HealthPrimary productionEnhanced vegetation index010501 environmental sciencesAtmospheric sciences01 natural sciencesNormalized Difference Vegetation IndexCarbon cycleNir reflectanceLinear relationshipPhotosynthetically active radiationRadianceEnvironmental science0105 earth and related environmental sciencesGeneral Environmental ScienceEnvironmental Research Letters
researchProduct